Stratigraphically controlled sequences of in situ lavas were collected from Loihi Seamount using the Alvin submersible to evaluate the volcano's temporal geochemical evolution. Three sections with up to 370 m of relief were sampled from the two pit craters at the summit of Loihi. All of the analyses were done on glass separates. Our results indicate that tholeiitic and alkalic volcanism at the summit of Loihi has been coeval. The tholeiitic and alkalic lavas have similar incompatible element patterns and O, Pb, Sr, and Nd isotope ratios but are distinct in some incompatible element ratios. These results are consistent with the different Loihi rock types being derived by variable degrees of melting from a common source. The crossing and light‐rare‐earth‐enriched rare earth element patterns and variable Sc/Yb ratios of the tholeiites indicate that their source was a garnet lherzolite. The relatively low δ18O values (∼4.9 ‰) for Loihi lavas are interpreted to be characteristic of the Hawaiian plume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.