Precision oncology relies on accurate discovery and interpretation of genomic variants, enabling individualized diagnosis, prognosis and therapy selection. We found that six prominent somatic cancer variant knowledgebases were highly disparate in content, structure and supporting primary literature, impeding consensus when evaluating variants and their relevance in a clinical setting. We developed a framework for harmonizing variant interpretations to produce a meta-knowledgebase of 12,856 aggregate interpretations. We demonstrated large gains in overlap between resources across variants, diseases and drugs as a result of this harmonization. We subsequently demonstrated improved matching between a patient cohort and harmonized interpretations of potential clinical significance, observing an increase from an average of 33% per individual knowledgebase to 57% in aggregate. Our analyses illuminate the need for open, interoperable sharing of variant interpretation data. We also provide a freely available web interface (search.cancervariants.org) for exploring the harmonized interpretations from these six knowledgebases.
Detection of hallmark genomic aberrations in acute myeloid leukemia (AML) is essential for diagnostic subtyping, prognosis and patient management. However, cytogenetic/cytogenomic techniques used to identify those aberrations, such as karyotyping, fluorescence in situ hybridization (FISH) or chromosomal microarray analysis (CMA), are limited by the need for skilled personnel as well as significant time, cost and labor. Optical genome mapping (OGM) provides in a single, cost-effective assay significantly higher resolution than karyotyping with comprehensive genome-wide analysis comparable to CMA and the added unique ability to detect balanced structural variants (SVs). Here, we report in a real-world setting the performance of OGM in a cohort of 100 AML cases, which were previously characterized by karyotype alone or karyotype and FISH or CMA. OGM identified all clinically relevant SVs and copy number variants (CNVs) reported by these standard cytogenetic methods when representative clones were present in >5% allelic fraction. Importantly, OGM identified clinically relevant information in 13% of cases that had been missed by the routine methods. Three cases reported with normal karyotypes were shown to have cryptic translocations involving gene fusions. In 4% of cases, OGM findings would have altered recommended clinical management and in an additional 8%, OGM would have rendered the cases potentially eligible for clinical trials. The results from this multi-institutional study indicate that OGM effectively recovers clinically relevant SVs and CNVs found by standard of care methods and reveals additional SVs not reported. Furthermore, OGM minimizes the need for labor-intensive multiple cytogenetic tests while concomitantly maximizing diagnostic detection through a standardized workflow.
Objective: Acute myeloid leukemia (AML) can be subtyped based on recurrent cytogenetic and molecular genetic abnormalities with diagnostic and prognostic significance. Although cytogenetic characterization classically involves conventional chromosome and/or fluorescence in situ hybridization (FISH) assays, limitations of these techniques include poor resolution and the inability to precisely identify breakpoints.
Method:We evaluated whether an NGS-based methodology that detects structural abnormalities and copy number changes using mate pair sequencing (MPseq) can enhance the diagnostic yield for patients with AML.Results: Using 68 known abnormal and 20 karyotypically normal AML samples, each recurrent primary AML-specific abnormality previously identified in the abnormal samples was confirmed using MPseq. Importantly, in eight cases with abnormalities that could not be resolved by conventional cytogenetic studies, MPseq was utilized to molecularly define eight recurrent AML-fusion events. In addition, MPseq uncovered two cryptic abnormalities that were missed by conventional cytogenetic studies. Thus, MPseq improved the diagnostic yield in the detection of AML-specific structural rearrangements in 10/88 (11%) of cases analyzed.
Conclusion:Utilization of MPseq represents a precise, molecular-based technique that can be used as an alternative to conventional cytogenetic studies for newly diagnosed AML patients with the potential to revolutionize the diagnosis of hematologic malignancies.
K E Y W O R D Sacute myeloid leukemia, molecular cytogenetics, MPseq
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.