The classical M1/M2 polarity of macrophages may not be applicable to inflammatory lung diseases including chronic obstructive pulmonary disease (COPD) due to the complex microenvironment in lungs and the plasticity of macrophages. We examined macrophage sub-phenotypes in bronchoalveolar lavage (BAL) fluid in 25 participants with CD40 (a M1 marker) and CD163 (a M2 marker). Of these, we performed RNA-sequencing on each subtype in 10 patients using the Illumina NextSeq 500. Approximately 25% of the macrophages did not harbor classical M1 or M2 surface markers (double negative, DN), and these cells were significantly enriched in COPD patients compared with non-COPD patients (46.7% vs. 14.5%, p < 0.001). 1886 genes were differentially expressed in the DN subtype compared with all other subtypes at a 10% false discovery rate. The 602 up-regulated genes included 15 mitochondrial genes and were enriched in 86 gene ontology (GO) biological processes including inflammatory responses. Modules associated with cellular functions including oxidative phosphorylation were significantly down-regulated in the DN subtype. Macrophages in the human BAL fluid, which were negative for both M1/M2 surface markers, harbored a gene signature that was pro-inflammatory and suggested dysfunction in cellular homeostasis. These macrophages may contribute to the pathogenesis and manifestations of inflammatory lung diseases such as COPD.
Lung macrophages are the key immune effector cells in the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD). Several studies have shown an increase in their numbers in bronchoalveolar lavage fluid (BAL) of subjects with COPD compared to controls, suggesting a pathogenic role in disease initiation and progression. Although reduced lung macrophage phagocytic ability has been previously shown in COPD, the relationship between lung macrophages’ phenotypic characteristics and functional properties in COPD is still unclear. (1) Methods: Macrophages harvested from bronchoalveolar lavage (BAL) fluid of subjects with and without COPD (GOLD grades, I–III) were immuno-phenotyped, and their function and gene expression profiles were assessed using targeted assays. (2) Results: BAL macrophages from 18 COPD and 10 (non-COPD) control subjects were evaluated. The majority of macrophages from COPD subjects were non-polarized (negative for both M1 and M2 markers; 77.9%) in contrast to controls (23.9%; p < 0.001). The percentages of these non-polarized macrophages strongly correlated with the severity of COPD (p = 0.006) and current smoking status (p = 0.008). Non-polarized macrophages demonstrated poor phagocytic function in both the control (p = 0.02) and COPD (p < 0.001) subjects. Non-polarized macrophages demonstrated impaired ability to phagocytose Staphylococcus aureus (p < 0.001). They also demonstrated reduced gene expression for CD163, CD40, CCL13 and C1QA&B, which are involved in pathogen recognition and processing and showed an increased gene expression for CXCR4, RAF1, amphiregulin and MAP3K5, which are all involved in promoting the inflammatory response. (3) Conclusions: COPD is associated with an abundance of non-polarized airway macrophages that is related to the severity of COPD. These non-polarized macrophages are predominantly responsible for the poor phagocytic capacity of lung macrophages in COPD, having reduced capacity for pathogen recognition and processing. This could be a key risk factor for COPD exacerbation and could contribute to disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.