Progenitor ("oval") cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors.
Inflammation participates in tissue repair through multiple mechanisms including directly regulating the cell fate of resident progenitor cells critical for successful regeneration. Upon surveying target cell types of the TNF ligand TWEAK, we observed that TWEAK binds to all progenitor cells of the mesenchymal lineage and induces NF-jB activation and the expression of pro-survival, pro-proliferative and homing receptor genes in the mesenchymal stem cells, suggesting that this pro-inflammatory cytokine may play an important role in controlling progenitor cell biology. We explored this potential using both the established C2C12 cell line and primary mouse muscle myoblasts, and demonstrated that TWEAK promoted their proliferation and inhibited their terminal differentiation. By generating mice deficient in the TWEAK receptor Fn14, we further showed that Fn14-deficient primary myoblasts displayed significantly reduced proliferative capacity and altered myotube formation. Following cardiotoxin injection, a known trigger for satellite cell-driven skeletal muscle regeneration, Fn14-deficient mice exhibited reduced inflammatory response and delayed muscle fiber regeneration compared with wild-type mice. These results indicate that the TWEAK/Fn14 pathway is a novel regulator of skeletal muscle precursor cells and illustrate an important mechanism by which inflammatory cytokines influence tissue regeneration and repair. Coupled with our recent demonstration that TWEAK potentiates liver progenitor cell proliferation, the expression of Fn14 on all mesenchymal lineage progenitor cells supports a broad involvement of this pathway in other tissue injury and disease settings.
T helper type 17 (Th17) cells play an important pathogenic function in autoimmune diseases; their regulation, however, is not well understood. We show that the expression of a tumor necrosis factor receptor family member, death receptor 3 (DR3; also known as TNFRSF25), is selectively elevated in Th17 cells, and that TL1A, its cognate ligand, can promote the proliferation of effector Th17 cells. To further investigate the role of the TL1A–DR3 pathway in Th17 regulation, we generated a TL1A-deficient mouse and found that TL1A−/− dendritic cells exhibited a reduced capacity in supporting Th17 differentiation and proliferation. Consistent with these data, TL1A−/− animals displayed decreased clinical severity in experimental autoimmune encephalomyelitis (EAE). Finally, we demonstrated that during EAE disease progression, TL1A was required for the optimal differentiation as well as effector function of Th17 cells. These observations thus establish an important role of the TL1A–DR3 pathway in promoting Th17 cell function and Th17-mediated autoimmune disease.
TNF-like weak inducer of apoptosis, or TWEAK, is a relatively new member of the TNF-ligand superfamily. Ligation of the TWEAK receptor Fn14 by TWEAK has proinflammatory effects on fibroblasts, synoviocytes, and endothelial cells. Several of the TWEAK-inducible cytokines are important in the pathogenesis of kidney diseases; however, whether TWEAK can induce a proinflammatory effect on kidney cells is not known. We found that murine mesangial cells express cell surface TWEAK receptor. TWEAK stimulation of mesangial cells led to a dose-dependent increase in CCL2/MCP-1, CCL5/RANTES, CXCL10/IFN-γ-induced protein 10 kDa, and CXCL1/KC. The induced levels of chemokines were comparable to those found following mesangial cell exposure to potent proinflammatory stimuli such as TNF-α + IL-1β. CXCL11/interferon-inducible T cell α chemoattractant, CXCR5, mucosal addressin cell adhesion molecule-1, and VCAM-1 were up-regulated by TWEAK as well. TWEAK stimulation of mesangial cells resulted in an increase in phosphorylated Iκ-B, while pretreatment with an Iκ-B phosphorylation inhibitor significantly blocked chemokine induction, implicating activation of the NF-κB signaling pathway in TWEAK-induced chemokine secretion. Importantly, the Fn14-mediated proinflammatory effects of TWEAK on kidney cells were confirmed using mesangial cells derived from Fn14-deficient mice and by injection in vivo of TWEAK into wild-type vs Fn14-deficient mice. Finally, TWEAK-induced chemokine secretion was prevented by treatment with novel murine anti-TWEAK Abs. We conclude that TWEAK induces mesangial cells to secrete proinflammatory chemokines, suggesting a prominent role for TWEAK in the pathogenesis of renal injury. Our results support Ab inhibition of TWEAK as a potential new approach for the treatment of chemokine-dependent inflammatory kidney diseases.
TNF-like weak inducer of apoptosis (TWEAK) is a TNF family member with pleiotropic effects on a variety of cell types, one of which is the induction of proinflammatory cytokines by synovial fibroblasts derived from rheumatoid arthritis (RA) patients. In this study, we report that the serum TWEAK level was dramatically elevated during mouse collagen-induced arthritis (CIA) and blocking TWEAK by a neutralizing mAb significantly reduced the clinical severity of CIA. Histological analyses also revealed that TWEAK inhibition diminished joint inflammation, synovial angiogenesis, as well as cartilage and bone erosion. Anti-TWEAK treatment proved efficacious when administered just before the disease onset but not during the priming phase of CIA. Consistent with this, TWEAK inhibition did not affect either cellular or humoral responses to collagen. In contrast, TWEAK inhibition significantly reduced serum levels of a panel of arthritogenic mediators, including chemokines such as MIP-1β (CCL-4), lymphotactin (XCL-1), IFN-γ-inducible protein 10 (IP-10) (CXCL-10), MCP-1 (CCL-2), and RANTES (CCL-5), as well as the matrix metalloprotease-9. Exploring the possible role of the TWEAK/Fn14 pathway in human RA pathogenesis, we showed that TWEAK can target human primary chondrocytes and osteoblast-like cells, in addition to synovial fibroblasts. We further demonstrated that TWEAK induced the production of matrix metalloproteases in human chondrocytes and potently inhibited chondrogenesis and osteogenesis using in vitro models. These results provide evidence for a novel cytokine pathway that contributes to joint tissue inflammation, angiogenesis, and damage, as well as may inhibit endogenous repair, suggesting that TWEAK may be a new therapeutic target for human RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.