We measure the oxygen and hydrogen stable isotope composition of authigenic clays from Himalayan foreland sediments (Siwalik Group), and from present day small stream waters in eastern Bhutan to explore the impact of uplift of the Shillong Plateau on rain shadow formation over the Himalayan foothills. Stable isotope data from authigenic clay minerals (<2 μm) suggest the presence of three paleoclimatic periods during deposition of the Siwalik Group, between ∼7 and ∼1 Ma. The mean δ18O value in paleometeoric waters, which were in equilibrium with clay minerals, is ∼2.5‰ lower than in modern meteoric and stream waters at the elevation of the foreland basin. We discuss the factors that could have changed the isotopic composition of water over time and we conclude that (a) the most likely and significant cause for the increase in meteoric water δ18O values over time is the “amount effect,” specifically, a decrease in mean annual precipitation. (b) The change in mean annual precipitation over the foreland basin and foothills of the Himalaya is the result of orographic effect caused by the Shillong Plateau's uplift. The critical elevation of the Shillong Plateau required to induce significant orographic precipitation was attained after ∼1.2 Ma. (c) By applying scale analysis, we estimate that the mean annual precipitation over the foreland basin of the eastern Bhutan Himalayas has decreased by a factor of 1.7–2.5 over the last 1–3 million years.
This study investigates the postglacial sea-level history of eastern Cumberland Peninsula, a region of Baffin Island, Nunavut where submerged terraces were documented in the 1970s. The gradient in elevation of emerged postglacial marine-limit deltas and fiord-head moraines led Dyke (1979) to propose a conceptual model for continuous postglacial submergence of the eastern peninsula. Multibeam mapping over the past decade has revealed eight unequivocal submerged deltas at 19-45 m below [present] sea level (bsl) and other relict shore-zone landforms (boulder barricade, spits, and sill platform) at 16-51 m bsl. Over a distance of 115 km from Qikiqtarjuaq to Cape Dyer, the submerged coastal features increase in depth toward the east, with a slope (0.36 m/km), somewhat less than that of the marine-limit shoreline previously documented (0.58-0.62 m/km). The submerged ice-proximal deltas, deglacial ice limits, and radiocarbon ages constrain the postglacial lowstand between 9.9 and 1.4 ka cal BP. The glacial-isostatic model ICE-7G_NA (VM7) (Peltier 2020) computes a lowstand relative sea level at 8.0 ka, the depth of which increases eastward at 0.28 m/km. The difference between observed and model-derived lowstand depths ranges from 1 m in the west to 10 m in the east and the predicted tilt is significantly less than observed (p=0.0008). The model results, emerging data on Holocene glacial re-advances on eastern Baffin Island, and evidence for proglacial delta formation point to a Cockburn (9.5-8.2 ka) age for the lowstand, most likely later in this range. This study confirms the 1970s conceptual model of postglacial submergence in outer Cumberland Peninsula and provides field evidence for further refinement of glacial-isostatic adjustment models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.