The thymus represents the major site of the production and generation of T cells expressing alphabeta-type T-cell antigen receptors. Age-related involution may affect the ability of the thymus to reconstitute T cells expressing CD4 cell-surface antigens that are lost during HIV infection; this effect has been seen after chemotherapy and bone-marrow transplantation. Adult HIV-infected patients treated with highly active antiretroviral therapy (HAART) show a progressive increase in their number of naive CD4-positive T cells. These cells could arise through expansion of existing naive T cells in the periphery or through thymic production of new naive T cells. Here we quantify thymic output by measuring the excisional DNA products of TCR-gene rearrangement. We find that, although thymic function declines with age, substantial output is maintained into late adulthood. HIV infection leads to a decrease in thymic function that can be measured in the peripheral blood and lymphoid tissues. In adults treated with HAART, there is a rapid and sustained increase in thymic output in most subjects. These results indicate that the adult thymus can contribute to immune reconstitution following HAART.
Summary We demonstrate here that LXR–dependent sterol homeostasis is a physiologically-regulated determinant of cell proliferation and acquired immune responses. T cell activation triggers simultaneous suppression of the LXR pathway for cholesterol transport and induction of the SREBP pathway for cholesterol synthesis. This coordinated program is engaged in part through induction of the sterol-metabolizing enzyme SULT2B1, expression of which in T cells blocks LXR signaling. Forced induction of LXR target genes during T cell activation markedly inhibits mitogen-driven expansion, whereas loss of LXRβ confers a proliferative advantage. Inactivation of the sterol transporter ABCG1 in T cells uncouples LXR signaling from proliferation, directly linking sterol homeostasis to the anti-proliferative action of LXR. Mice lacking LXRβ exhibit lymphoid hyperplasia and enhanced responses to antigenic challenge, indicating that proper regulation of LXR-dependent sterol metabolism is important for immune responses. These data implicate LXR signaling in a metabolic checkpoint that modulates cell proliferation and immunity.
BackgroundEpigenetic biomarkers of aging (the “epigenetic clock”) have the potential to address puzzling findings surrounding mortality rates and incidence of cardio-metabolic disease such as: (1) women consistently exhibiting lower mortality than men despite having higher levels of morbidity; (2) racial/ethnic groups having different mortality rates even after adjusting for socioeconomic differences; (3) the black/white mortality cross-over effect in late adulthood; and (4) Hispanics in the United States having a longer life expectancy than Caucasians despite having a higher burden of traditional cardio-metabolic risk factors.ResultsWe analyzed blood, saliva, and brain samples from seven different racial/ethnic groups. We assessed the intrinsic epigenetic age acceleration of blood (independent of blood cell counts) and the extrinsic epigenetic aging rates of blood (dependent on blood cell counts and tracks the age of the immune system). In blood, Hispanics and Tsimane Amerindians have lower intrinsic but higher extrinsic epigenetic aging rates than Caucasians. African-Americans have lower extrinsic epigenetic aging rates than Caucasians and Hispanics but no differences were found for the intrinsic measure. Men have higher epigenetic aging rates than women in blood, saliva, and brain tissue.ConclusionsEpigenetic aging rates are significantly associated with sex, race/ethnicity, and to a lesser extent with CHD risk factors, but not with incident CHD outcomes. These results may help elucidate lower than expected mortality rates observed in Hispanics, older African-Americans, and women.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-016-1030-0) contains supplementary material, which is available to authorized users.
Memory is a hallmark of the immune system and ever since its recognition there has been considerable interest in understanding how immunity is maintained. The current model is that long-term memory is dependent on persistent antigenic stimulation. We report here results that challenge this view and provide evidence that antigen is not essential for the maintenance of CD8+ T-cell memory. We show that memory CD8+ cytotoxic T lymphocytes persist indefinitely in the absence of priming antigen, retain the memory phenotype (CD44hi), and provide protection against virus challenge. These findings suggest a re-evaluation of our current thinking on mechanisms involved in maintaining immunity and have implications towards designing effective vaccination strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.