[1] We have studied ice formation at temperatures relevant to homogeneous and heterogeneous ice nucleation, as well as droplet activation and hygroscopicity, of soot particles of variable size and composition. Coatings of adipic, malic, and oleic acid were applied in order to span an atmospherically relevant range of solubility, and both uncoated and oleic acid coated soot particles were exposed to ozone in order to simulate atmospheric oxidation. The results are interpreted in terms of onset ice nucleation, with a comparison to a mineral dust particle that acts as an efficient ice nucleus, and particle hygroscopicity. At 253 K and 243 K, we found no evidence of heterogeneous ice nucleation occurring above the level of detection for our experimental conditions. Above water saturation, only droplet formation was observed. At 233 K, we observe the occurrence of homogeneous ice nucleation for all particles studied. Coatings also did not significantly alter the ice nucleation behavior of soot particles but aided in the uptake of water. Hygroscopicity studies confirmed that pure soot particles were hydrophobic, and coated soot particles activated as droplets at high water supersaturations. A small amount of heterogeneous ice nucleation either below the detection limit of our instrument or concurrent with droplet formation and/or homogeneous freezing cannot be precluded, but we are able to set limits for its frequency. We conclude that both uncoated and coated soot particles comparable to those generated in our studies are unlikely to significantly contribute to the global budget of heterogeneous ice nuclei at temperatures between 233 K and 253 K.
Isocyanic acid (HNCO) is a well‐known air pollutant that affects human health. Biomass burning, smoking, and combustion engines are known HNCO sources, but recent studies suggest that secondary production in the atmosphere may also occur. We directly observed photochemical production of HNCO from the oxidative aging of diesel exhaust during the Diesel Exhaust Fuel and Control experiments at Colorado State University using acetate ionization time‐of‐flight mass spectrometry. Emission ratios of HNCO were enhanced, after 1.5 days of simulated atmospheric aging, from 50 to 230 mg HNCO/kg fuel at idle engine operating conditions. Engines operated at higher loads resulted in less primary and secondary HNCO formation, with emission ratios increasing from 20 to 40 mg HNCO/kg fuel under 50% load engine operating conditions. These results suggest that photochemical sources of HNCO could be more significant than primary sources in urban areas.
Immersion‐mode ice‐nucleating particle (INP) concentrations from an off‐road diesel engine were measured using a continuous‐flow diffusion chamber at −30°C. Both petrodiesel and biodiesel were utilized, and the exhaust was aged up to 1.5 photochemically equivalent days using an oxidative flow reactor. We found that aged and unaged diesel exhaust of both fuels is not likely to contribute to atmospheric INP concentrations at mixed‐phase cloud conditions. To explore this further, a new limit‐of‐detection parameterization for ice nucleation on diesel exhaust was developed. Using a global‐chemical transport model, potential black carbon INP (INPBC) concentrations were determined using a current literature INPBC parameterization and the limit‐of‐detection parameterization. Model outputs indicate that the current literature parameterization likely overemphasizes INPBC concentrations, especially in the Northern Hemisphere. These results highlight the need to integrate new INPBC parameterizations into global climate models as generalized INPBC parameterizations are not valid for diesel exhaust.
Organic acids have primary and secondary sources in the atmosphere, impact ecosystem health, and are useful metrics for identifying gaps in organic oxidation chemistry through model-measurement comparisons. We photooxidized (OH oxidation) primary emissions from diesel and biodiesel fuel types under two engine loads in an oxidative flow reactor. formic, butyric, and propanoic acids, but not methacrylic acid, have primary and secondary sources. Emission factors for these gas-phase acids varied from 0.3-8.4 mg kg fuel. Secondary chemistry enhanced these emissions by 1.1 (load) to 4.4 (idle) × after two OH-equivalent days. The relative enhancement in secondary organic acids in idle versus loaded conditions was due to increased precursor emissions, not faster reaction rates. Increased hydrocarbon emissions in idle conditions due to less complete combustion (associated with less oxidized gas-phase molecules) correlated to higher primary organic acid emissions. The lack of correlation between organic aerosol and organic acid concentrations downstream of the flow reactor indicates that the secondary products formed on different oxidation time scales and that despite being photochemical products, organic acids are poor tracers for secondary organic aerosol formation from diesel exhaust. Ignoring secondary chemistry from diesel exhaust would lead to underestimates of both organic aerosol and gas-phase organic acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.