Plasmalogens are ether-linked phospholipids that are abundant in nervous tissues. Their biological role is unclear, but may involve membrane structure/function and antioxidant activities. This study further investigates a recent report that chronic administration of myo-inositol in rats increased brain phosphatidylethanolamine plasmalogen (PlsEtn). We examined the effects of myo-inositol administration on the incorporation of [2-(13)C]ethanolamine ([2-(13)C]Etn) into rat brain phospholipids using NMR spectroscopy. Rats received either acute myo-inositol (single dose) +/- [2-(13)C]Etn, or chronic myo-inositol (10-day treatment) + [2-(13)C]Etn. Controls received saline rather than myo-inositol. Acute myo-inositol produced a 68% increase in brain [myo-inositol] and an increase in the incorporation of [2-(13)C]Etn into phospholipids (P < .05). The PlsEtn/phosphatidylethanolamine ratio and the [PlsEtn] were increased by 27% and 30%, respectively. The PlsEtn content as a mole percentage of total phospholipids was elevated (P < or = .05). Acute administration of myo-inositol + ethanolamine illustrates a positive correlation between the brain [myo-inositol] and the biosynthesis of ethanolamine phospholipids, with preferential synthesis of PlsEtn.
Plasmalogens are ether-linked phospholipids highly abundant in nervous tissue. Previously we demonstrated that acute administration of myo-inositol (myo-Ins) + [2-(13)C] ethanolamine ([2-(13)C]Etn) significantly elevated phosphatidylethanolamine plasmalogen (PlsEtn) in rat whole brain. Current experiments investigated the effects of acute myo-Ins+[2-(13)C]Etn administration on [PlsEtn] and the biosynthesis of new Etn lipids using NMR spectroscopy in rat cerebral cortex, hippocampus, brainstem, midbrain and cerebellum. Treated rats received a single dose of myo-Ins + [2-(13)C]Etn and controls received saline rather than myoIns. Data reveal that the cerebellum is the brain region most affected by treatment, which resulted in a 22% increase in [PlsEtn] and 89% increase in newly synthesized Etn lipids relative to controls (P < 0.05). Furthermore, the cerebellar PlsEtn/phosphatidylethanolamine ratio and molar percentage of PlsEtn were significantly elevated by 12% and 8%, respectively (P < 0.05). These data suggest that myo-Ins influences Etn lipid metabolism in brain, particularly in the cerebellum where there is a stimulation in the biosynthesis of new Etn lipids with a preference towards PlsEtn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.