To test the hypothesis that inhibition of axonal transport is sufficient to cause motor neuron degeneration such as that observed in amyotrophic lateral sclerosis (ALS), we engineered a targeted disruption of the dynein-dynactin complex in postnatal motor neurons of transgenic mice. Dynamitin overexpression was found to disassemble dynactin, a required activator of cytoplasmic dynein, resulting in an inhibition of retrograde axonal transport. Mice overexpressing dynamitin demonstrate a late-onset progressive motor neuron degenerative disease characterized by decreased strength and endurance, motor neuron degeneration and loss, and denervation of muscle. Previous transgenic mouse models of ALS have shown abnormalities in microtubule-based axonal transport. In this report, we describe a mouse model that confirms the critical role of disrupted axonal transport in the pathogenesis of motor neuron degenerative disease.
The "premyofibril" model of myofibrillogenesis, based on observations in cultured avian muscle cells, proposes that mature myofibrils are preceded by two intermediary structures: premyofibrils and nascent myofibrils. To determine if this model applies to zebrafish skeletal muscle development, we stained developing embryos with antibodies to sarcomeric alpha-actinin and myosin II. In the youngest muscle cells, sarcomeric alpha-actinin and non-muscle myosin II were each localized in linear arrays of small bands that resembled the premyofibrils in avian myocytes. The distribution of muscle-specific myosin II began as scattered short filaments followed in time by overlapping bundles of filaments and organized A-bands in the older somites. Alpha-actinin organization changed from small z-bodies to beaded Z-bands and ordered Z-bands in myofibrils that extended the length of the elongating somites. In older somites with mature myofibrils, premyofibrils were also present at the ends of the mature myofibrils, suggesting that as the cells and somites grew longer, premyofibrils were involved in the elongation of existing mature myofibrils. Fluorescence Recovery After Photobleaching showed that the exchange of proteins (actin, alpha-actinin, FATZ, myotilin and telethonin) between sarcoplasm and the Z-bands of mature myofibrils in zebrafish resembled that seen for the same proteins in cultured avian myotubes, suggesting that myofibril assembly and maintenance in zebrafish share common properties with avian muscle.
BackgroundExpression QTL analyses have shed light on transcriptional regulation in numerous species of plants, animals, and yeasts. These microarray-based analyses identify regulators of gene expression as either cis-acting factors that regulate proximal genes, or trans-acting factors that function through a variety of mechanisms to affect transcript abundance of unlinked genes.ResultsA hydroponics-based genetical genomics study in roots of a Zea mays IBM2 Syn10 double haploid population identified tens of thousands of cis-acting and trans-acting eQTL. Cases of false-positive eQTL, which results from the lack of complete genomic sequences from both parental genomes, were described. A candidate gene for a trans-acting regulatory factor was identified through positional cloning. The unexpected regulatory function of a class I glutamine amidotransferase controls the expression of an ABA 8'-hydroxylase pseudogene.ConclusionsIdentification of a candidate gene underlying a trans-eQTL demonstrated the feasibility of eQTL cloning in maize and could help to understand the mechanism of gene expression regulation. Lack of complete genome sequences from both parents could cause the identification of false-positive cis- and trans-acting eQTL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.