A time-course experiment was conducted to evaluate the effects of gamma radiation on the indigenous microbiota present in rock obtained from Yucca Mountain, Nevada Test Site. Microcosms were constructed by placing pulverized Yucca Mountain rock in polystyrene cylinders. Continuous exposure (96 h) at a dose rate of 1.63 Gy/min was used to mimic the near-field environment surrounding waste canisters. The expected maximum surface dose rate from one unbreached canister designed to contain spent nuclear fuels is 0.06 Gy/min. Considering the current repository packing design, multiple canisters within one vault, the cumulative dose rate may well approach that used in this experiment. The microbial communities were characterized after receiving cumulative doses of 0, 0.098, 0. 58, 2.33, 4.67, 7.01 and 9.34 kGy. Radiation-resistant microorganisms in the pulverized rock became viable but nonculturable (VBNC) after a cumulative dose of 2.33 kGy. VBNC microorganisms lose the ability to grow on media on which they have routinely been cultured in response to the environmental stress imposed (i.e. radiation) but can be detected throughout the time course using direct fluorescence microscopy techniques. Two representative exopolysaccharide-producing isolates from Yucca Mountain were exposed to the same radiation regimen in sand microcosms. One isolate was much more radiation-resistant than the other, but both had greater resistance than the general microbial community based on culturable counts. However, when respiring cell counts (VBNC) were compared after irradiation, the results would indicate much more radiation resistance of the individual isolates and the microbial community in general. These results have significant implications for underground storage of nuclear waste as they indicate that indigenous microorganisms are capable of surviving gamma irradiation in a VBNC state.
Microbiological analysis of rock exposed to gamma-radiation doses between 0 and 9.34 kGy indicated that some microorganisms became viable but nonculturable (VBNC) and lost metabolic capacity as measured by BIOLOG microtiter plates. To investigate this phenomenon, portions of irradiated rock were placed at 4 degrees C for 2 months in an attempt to resuscitate the microbes to a culturable state. Culturable heterotrophs were enumerated and BIOLOG plates were used to determine the metabolic capability of the microbial community. Culturable bacteria that had previously been nonculturable were found at all doses. The number of colony types decreased from 26 in the nonirradiated control rock to between 9 and 10 in rock irradiated at doses ranging from 2.34 to 9.34 kGy. BIOLOG plates indicated partial recovery of metabolic capacity in all the samples tested. Fatty acid methyl ester analysis of the recovered isolates using the MIDI system (Microbial ID, Inc.) yielded three distinct groups of related bacteria. All resuscitated isolates clustered with the original nonirradiated isolates at the genus level, and 92% of them clustered at the species level. These results indicate that microbes were likely resuscitated from a VBNC state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.