Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.
BackgroundAlterations of endocannabinoid system in adipose tissue play an important role in lipid regulation and metabolic dysfunction associated with obesity. The purpose of this study was to determine whether gene expression levels of cannabinoid type 1 receptor (CB1) and fatty acid amide hydrolase (FAAH) are different in subcutaneous abdominal and gluteal adipose tissue, and whether hypocaloric diet and aerobic exercise influence subcutaneous adipose tissue CB1 and FAAH gene expression in obese women.MethodsThirty overweight or obese, middle-aged women (BMI = 34.3 ± 0.8 kg/m2, age = 59 ± 1 years) underwent one of three 20-week weight loss interventions: caloric restriction only (CR, N = 9), caloric restriction plus moderate-intensity aerobic exercise (CRM, 45-50% HRR, N = 13), or caloric restriction plus vigorous-intensity aerobic exercise (CRV, 70-75% HRR, N = 8). Subcutaneous abdominal and gluteal adipose tissue samples were collected before and after the interventions to measure CB1 and FAAH gene expression.ResultsAt baseline, FAAH gene expression was higher in abdominal, compared to gluteal adipose tissue (2.08 ± 0.11 vs. 1.78 ± 0.10, expressed as target gene/β-actin mRNA ratio × 10-3, P < 0.05). Compared to pre-intervention, CR did not change abdominal, but decreased gluteal CB1 (Δ = -0.82 ± 0.25, P < 0.05) and FAAH (Δ = -0.49 ± 0.14, P < 0.05) gene expression. CRM or CRV alone did not change adipose tissue CB1 and FAAH gene expression. However, combined CRM and CRV (CRM+CRV) decreased abdominal adipose tissue FAAH gene expression (Δ = -0.37 ± 0.18, P < 0.05). The changes in gluteal CB1 and abdominal FAAH gene expression levels in the CR alone and the CRM+CRV group were different (P < 0.05) or tended to be different (P = 0.10).ConclusionsThere are depot differences in subcutaneous adipose tissue endocannabinoid system gene expression in obese individuals. Aerobic exercise training may preferentially modulate abdominal adipose tissue endocannabinoid-related gene expression during dietary weight loss.Trial RegistrationClinicalTrials.gov: NCT00664729.
Background Accelerometers can objectively measure steps taken per day in individuals without gait deficits, but accelerometers also have the ability to estimate frequency, intensity, and duration of physical activity. However, thresholds to distinguish varying levels of activity intensity using the Actical brand accelerometer are standardized only for the general population and may underestimate intensity in stroke. Objective To derive Actical activity count thresholds specific to stroke disability for use in more accurately gauging time spent at differing activity levels. Methods Men (n=18) and women (n=10) with chronic hemiparetic gait (4±2 years latency, 43% Caucasian, 56% African American, ages of 47–83 yrs, BMI 19 – 48 kg/m2) participated in the study. Actical accelerometers were placed on the non-paretic hip to obtain accelerometry counts during eight activities of varying intensity: 1) watching TV; 2) seated stretching; 3) standing stretching; 4) floor sweeping; 5) stepping in place; 6) over-ground walking; 7) lower speed treadmill walking (1.0 mph at 4% incline); and 8) higher speed treadmill walking (2.0 mph at 4% incline). Simultaneous portable monitoring (Cosmed K4b2) enabled quantification of energy cost for each activity in metabolic equivalents (METs, or oxygen consumption in multiples of resting level). Measurements were obtained for 10 min of standard rest and 5 minutes during each of the eight activities. Results Regression analysis yielded the following new stroke-specific Actical minimum thresholds: 125 counts per minute (cpm) for sedentary/light activity, 667 cpm for light/moderate activity, and 1546 cpm for moderate/vigorous activity. Conclusion Our revised cut-points better reflect activity levels after stroke and suggest significantly lower thresholds relative to those observed for the general population of healthy individuals. We conclude that the standard, commonly applied Actical thresholds are inappropriate for this unique population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.