Mitochondria are cellular organelles regulating metabolism and cell death pathways. This study examined changes in mitochondrial membrane potential (deltapsim) throughout the stages of preimplantation development in mouse embryos conceived either in vivo or in vitro and human embryos donated to research from IVF. Embryos stained with the deltapsim-sensitive dye (JC-1) were quantified for the ratio of high- to low-polarized mitochondria using a deconvolution microscope. Overall, mouse zygotes and early embryos contain a subset of high-polarized mitochondria with a progressive increase in the ratio of deltapsim observed with increasing cleavage. A transient increase in the ratio of high to low deltapsim was observed in in vivo fertilized 2-cell stage embryos, coincident with embryonic genome activation in the mouse, but not in 2-cell embryos obtained through IVF. We further observed that arrested mouse 2-cell embryos possessed an increased ratio of deltapsim compared with non-arrested embryos. In human 8-cell embryos we observed an increased ratio of high- to low-polarized mitochondria with increasing degrees of embryo fragmentation. We concluded that the pattern of mitochondrial membrane potential progressively changes throughout preimplantation development, and that an aberrant shift in deltapsim could contribute to, or is associated with, decreased developmental potential.
Human preimplantation embryo development is prone to high rates of early embryo wastage, particularly under current in vitro culture conditions. There are many possible underlying causes for embryo demise, including DNA damage, poor embryo metabolism and the effect of suboptimal culture media, all of which could result in an imbalance in gene expression and the failed execution of basic embryonic decisions. In view of the complex interactions involved in embryo development, a thorough understanding of these parameters is essential to improving embryo quality. An increasing body of evidence indicates that cell fate (i.e. survival/differentiation or death) is determined by the outcome of specific intracellular interactions between pro-and anti-apoptotic proteins, many of which are expressed during oocyte and preimplantation embryo development. The recent availability of mutant mice lacking expression of various genes involved in the regulation of cell survival has enabled rapid progress towards identifying those molecules that are functionally important for normal oocyte and preimplantation embryo development. In this review we will discuss the current understanding of the regulation of cell death gene expression during preimplantation embryo development, with a focus on human embryology and a discussion of animal models where appropriate.
Cytoplasmic transfer is an assisted reproductive technique that involves the infusion of ooplasm from a donor oocyte into a recipient oocyte of inferior developmental competence. Although this technique has shown some success for couples with recurrent in vitro fertilization failure, it results in mitochondrial heteroplasmy in the offspring, defined as the presence of two different mitochondrial genomes in the same individual. Because the long-term health consequences of mitochondrial heteroplasmy are unknown, there is a need for appropriate animal models to evaluate any physiological changes of dual mtDNA genotypes. This longitudinal study was designed as a preliminary screen of basic physiological functions for heteroplasmic mice (NZB mtDNA on a BALB/cByJ background). The mice were tested for cardiovascular and metabolic function, hematological parameters, body mass analysis, ovarian reserve, and tissue histologic abnormalities over a period of 15 mo. Heteroplasmic mice developed systemic hypertension that corrected over time and was accompanied by cardiac changes consistent with pulmonary hypertension. In addition, heteroplasmic animals had increased body mass and fat mass compared with controls at all ages. Finally, these animals had abnormalities in electrolytes and hematological parameters. Our findings suggest that there are significant physiological differences between heteroplasmic and control mice. Because ooplasm transfer appears to be consistently associated with mitochondrial heteroplasmy, children conceived through ooplasm transfer should be closely followed to determine if they are at risk for any health problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.