Bone cancer pain can be difficult to control, as it appears to be driven simultaneously by inflammatory, neuropathic and tumorigenic mechanisms. As nerve growth factor (NGF) has been shown to modulate inflammatory and neuropathic pain states, we focused on a novel NGF sequestering antibody and demonstrated that two administrations of this therapy in a mouse model of bone cancer pain produces a profound reduction in both ongoing and movement-evoked bone cancer pain-related behaviors that was greater than that achieved with acute administration of 10 or 30 mg/kg of morphine. This therapy also reduced several neurochemical changes associated with peripheral and central sensitization in the dorsal root ganglion and spinal cord, whereas the therapy did not influence disease progression or markers of sensory or sympathetic innervation in the skin or bone. Mechanistically, the great majority of sensory fibers that innervate the bone are CGRP/TrkA expressing fibers, and if the sensitization and activation of these fibers is blocked by anti-NGF therapy there would not be another population of nociceptors, such as the non-peptidergic IB4/RET-IR nerve fibers, to take their place in signaling nociceptive events.
To begin to understand the relationship between disease progression and pain in pancreatic cancer, transgenic mice that develop pancreatic cancer due to the expression of the simian virus 40 large T antigen under control of the rat elastase-1 promoter were examined. In these mice precancerous cellular changes were evident at 6 weeks and these included an increase in: microvascular density, macrophages that express nerve growth factor and the density of sensory and sympathetic fibers that innervate the pancreas, with all of these changes increasing with tumor growth. In somatic tissue such as skin, the above changes would be accompanied by significant pain; however, in mice with pancreatic cancer, changes in pain-related behaviors, such as morphine-reversible severe hunching and vocalization only became evident at 16 weeks of age, by which time the pancreatic cancer was highly advanced. These data suggest that in mice as well as humans, there is a stereotypic set of pathological changes that occur as pancreatic cancer develops, and while weight loss generally tracks disease progression, there is a significant lag between disease progression and behaviors indicative of pancreatic cancer pain. Defining the mechanisms that mask this pain in early and mid-stage disease and drive the pain in late-stage disease may aid in earlier diagnosis, survival, and increased quality of life of patients with pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.