Introduction Fall prevention is important for maintaining mobility and independence into old age. Approaches for reducing falls include exercise, tai chi, and home modifications; however, causes of falling are multifactorial and include not just physical but cognitive factors. Cognitive decline occurs with age, but older adults with the greatest declines in executive function experience more falls. The purpose of this study was twofold: to demonstrate the feasibility of a community-based cognitive training program for cognitively intact Black older adults and to analyze its impact on gait and balance in this population. Method This pilot study used a pretest/posttest randomized trial design with assignment to an intervention or control group. Participants assigned to the intervention completed a computer-based cognitive training class that met 2 days a week for 60 min over 10 weeks. Classes were held at senior/community centers. Primary outcomes included balance as measured by the Berg Balance Scale (BBS), 10-meter gait speed, and 10-meter gait speed under visuospatial dual-task condition. All measures were assessed at baseline and immediately post-intervention. Results Participants were community-dwelling Black adults with a mean age of 72.5 and history of falls (N = 45). Compared to controls, intervention participants experienced statistically significant improvements in BBS and gait speed. Mean performance on distracted gait speed also improved more for intervention participants compared to controls. Conclusion Findings from this pilot randomized trial demonstrate the feasibility of a community-based cognitive training intervention. They provide initial evidence that cognitive training may be an efficacious approach toward improving balance and gait in older adults known to have a history of falls.
Advancing age is typically associated with declining memory capacity and increased risk of Alzheimer’s disease (AD). Markers of AD such as amyloid plaques (AP) and neurofibrillary tangles (NFTs) are commonly found in the brains of cognitively average elderly but in more limited distribution than in those at the mild cognitive impairment and dementia stages of AD. Cognitive SuperAgers are individuals over age 80 who show superior memory capacity, at a level consistent with individuals 20–30 years their junior. Using a stereological approach, the current study quantitated the presence of AD markers in the memory-associated entorhinal cortex (ERC) of seven SuperAgers compared with six age-matched cognitively average normal control individuals. Amyloid plaques and NFTs were visualized using Thioflavin-S histofluorescence, 6E10, and PHF-1 immunohistochemistry. Unbiased stereological analysis revealed significantly more NFTs in ERC in cognitively average normal controls compared with SuperAgers (P < 0.05) by a difference of ~3-fold. There were no significant differences in plaque density. To highlight relative magnitude, cases with typical amnestic dementia of AD showed nearly 100 times more entorhinal NFTs than SuperAgers. The results suggest that resistance to age-related neurofibrillary degeneration in the ERC may be one factor contributing to preserved memory in SuperAgers.
Objective: SuperAgers are adults over the age of 80 with superior episodic memory performance and at least average-for-age performance in non-episodic memory domains. This study further characterized the neuropsychological profile of SuperAgers compared to average-for-age episodic memory peers to determine potential cognitive mechanisms contributing to their superior episodic memory performance. Method: Retrospective analysis of neuropsychological test data from 56 SuperAgers and 23 similar-age peers with average episodic memory was conducted. Independent sample t-tests evaluated between-group differences in neuropsychological scores. Multiple linear regression determined the influence of non-episodic memory function on episodic memory scores across participants. Results: As a group, SuperAgers had better scores than their average memory peers on measures of attention, working memory, naming, and speeded set shifting. Scores on tests of processing speed, visuospatial function, verbal fluency, response inhibition, and abstract reasoning did not differ. On an individual level, there was variability among SuperAgers with regard to non-episodic memory performance, with some performing above average-for-age across cognitive domains while others performed in the average-for-age range on non-memory tests. Across all participants, attention and executive function scores explained 20.4% of the variance in episodic memory scores. Conclusions: As a group, SuperAgers outperformed their average memory peers in multiple cognitive domains, however, there was considerable intragroup variability suggesting that SuperAgers’ episodic memory strength is not simply related to globally superior cognitive functioning. Attention and executive function performance explained approximately one-fifth of the variance in episodic memory and maybe areas to target with cognitive interventions.
Background Unusually successful cognitive aging (e.g. SuperAging) may reflect underlying resistance to age‐associated cognitive decline and the neuropathologic markers of Alzheimer’s disease (AD). However, it is unknown whether these individuals vary in their genetic protection from AD relative to other clinically normal elderly individuals. Method The Northwestern SuperAgers cohort (n=41) was limited to clinically normal individuals who were at least 80 years old but performed at or above normative values for average 50 to 65‐year‐olds on delayed recall of the Rey Auditory Verbal Learning Test and within one standard deviation of the average normative range for their age, or better, on non‐episodic memory tests including the 30‐item Boston Naming Test, Trail Making Test Part‐B and Category Fluency Test (Animals). The UC San Diego (UCSD) Shiley Marcos Alzheimer’s Disease Research Center and Alzheimer’s Disease Neuroimaging Initiative (ADNI) comparison cohorts (n=17 and 46, respectively) included all clinically normal individuals with available genetic data who were at least 80 years old but did not meet the criteria for SuperAgers outlined above. Polygenic hazard scores (PHS) were downloaded from ADNI and calculated for each participant as described (Desikan et al., 2017) for the Northwestern and UCSD cohorts. Briefly, the PHS combines an individual’s genotype for 31 AD‐associated SNPs in addition to APOE. Result All three cohorts were similar in age (range: 80‐101) and years of education (range: 12‐20). However, there were significantly more women in the Northwestern SuperAgers cohort (p < 0.001). The mean PHS in each cohort was negative, indicating that these individuals had less than average population risk for AD. However, there were no significant differences in PHS between cohorts. Conclusion As a group, SuperAgers did not have lower polygenic risk for AD than clinically normal elderly individuals, suggesting determinants of superior memory performance in older age cannot be solely explained by having unusually low risk for AD as assessed by common genetic variants. Given the sex differences in these cohorts, future work should consider whether sex‐specific polygenic risk for AD contributes to the superior memory performance of SuperAgers.
Objective: Older adults with exceptional memory function, designated “SuperAgers,” include individuals over age 80, with episodic memory at least as good as individuals ages 50s–60s. The Northwestern University SuperAging cohort is defined by performance on an established test of verbal memory. The purpose of this study was to determine if superior verbal memory extends to nonverbal memory in SuperAgers by examining differences in the National Institutes of Health Toolbox® (NIHTB) between older adults with exceptional memory and those with average-for-age cognition. Method: SuperAgers (n = 46) and cognitively average-for-age older adults (n = 31) completed a comprehensive neuropsychological battery and the NIHTB Cognition module. Multiple linear regressions were used to examine differences on subtests between groups. Results: There was a significant effect of group on the Picture Sequence Memory score, (p = .007), such that SuperAgers had higher scores than cognitively average-for-age older adults. There were no other group effects across other non-episodic memory NIHTB Cognition measures. Conclusions: Findings from this study demonstrated stronger performance on the memory measure of the NIHTB in SuperAgers compared to cognitively average-for-age older adults demonstrating superior memory in not only verbal but also nonverbal episodic memory in this group. Additionally, this study adds to the literature validating the NIHTB in older adults, particularly in a novel population of adults over age 80 with exceptional memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.