The loss of telomere function can result in telomeric fusion events that lead to the types of genomic rearrangements, such as nonreciprocal translocations, that typify early-stage carcinogenesis. By using single-molecule approaches to characterize fusion events, we provide a functional definition of fusogenic telomeres in human cells. We show that approximately half of the fusion events contained no canonical telomere repeats at the fusion point; of those that did, the longest was 12.8 repeats. Furthermore, in addition to end-replication losses, human telomeres are subjected to large-scale deletion events that occur in the presence or absence of telomerase. Here we show that these telomeres are fusogenic, and thus despite the majority of telomeres being maintained at a stable length in normal human cells, a subset of stochastically shortened telomeres can potentially cause chromosomal instability. Telomere fusion was accompanied by the deletion of one or both telomeres extending several kilobases into the telomere-adjacent DNA, and microhomology was observed at the fusion points. This contrasted with telomere fusion that was observed following the experimental disruption of TRF2. The distinct error-prone mutational profile of fusion between critically shortened telomeres in human cells was reminiscent of Ku-independent microhomology-mediated end-joining.[Keywords: Telomere; telomerase; genomic instability; mutation; DNA repair; neoplasia] Supplemental material is available at http://www.genesdev.org.
Single telomere length analysis (STELA) of the XpYp telomere has revealed extensive allelic variation and ultra-short telomeres in senescent cells. Superimposed on end-replication losses are additional mutational events that result in large-scale changes in telomere length. In order to establish if the dynamics of the XpYp telomere are typical of human telomeres, here we describe an analysis using STELA of the telomeres of 2p, 11q, 12q, 17p and XpYp. The dynamics of telomere loss (erosion rates and stochastic length changes) was conserved among 2p, 11q, 12q and XpYp within the same cell strains and was dependent on the replicative kinetics of the cells in culture. However, of the telomeres analysed, the telomere of 17p was more stable with a striking paucity of large-scale length changes, and exhibited the shortest recorded allelic distribution (300 bp) in senescent cells and displayed a general, but not absolute, trend towards being the shortest telomere. Ectopic over-expression of hTERT homogenized both allelic and chromosome-specific telomeric distributions. However, telomerase-expressing cancer cells displayed both allelic variation and chromosome-specific telomere length, with 17p displaying the shortest allelic telomere length. Although other telomeres in the genome may share the properties of 17p, these data suggest that physiological levels of telomerase allow differential telomere length regulation and indicate the presence of cis-acting factors that govern both telomeric stability and chromosome-specific telomere length in the presence of telomerase.
Telomeres play a key role in upholding the integrity of the genome, and telomerase expression in spermatogonial stem cells is responsible for the maintenance of telomere length in the human male germline. We have previously described extensive allelic variation in somatic cell telomere length that is set in the zygote, the ultimate source of which may be the germline. This implies that despite telomerase activity, substantial telomere length variation can be generated and tolerated in the germline; in order to investigate this further, we have examined the nature of telomere length variation in the human male germline. Here, we describe an analysis of both genome-wide telomere length and single molecule analysis of specific chromosome ends in human sperm. We observed individual specific differences in genome-wide telomere length. This variation may result from genetic differences within the components that determine the telomere length setting of each individual. Superimposed on the genome wide telomere length setting was a stochastic component of variation that generates germ-cells containing severely truncated telomeres. If not re-lengthened during early embryogenesis, such telomeres may limit the replicative capacity of cells derived from the zygote and have the potential to create fusagenic chromosomes, unbalanced translocations and terminal micro-deletions. These data may have implications for the genetic determination of ageing, genetic disease and fertility.
SummaryDefining the prognosis of individual cancer sufferers remains a significant clinical challenge. Here we assessed the ability of high-resolution single telomere length analysis (STELA), combined with an experimentally derived definition of telomere dysfunction, to predict the clinical outcome of patients with chronic lymphocytic leukaemia (CLL). We defined the upper telomere length threshold at which telomere fusions occur and then used the mean of the telomere 'fusogenic' range as a prognostic tool. Patients with telomeres within the fusogenic range had a significantly shorter overall survival (P < 0Á0001; Hazard ratio [HR] = 13Á2, 95% confidence interval [CI] = 11Á6-106Á4) and this was preserved in early-stage disease patients (P < 0Á0001, HR=19Á3, 95% CI = 17Á8-802Á5). Indeed, our assay allowed the accurate stratification of Binet stage A patients into those with indolent disease (91% survival at 10 years) and those with poor prognosis (13% survival at 10 years). Furthermore, patients with telomeres above the fusogenic mean showed superior prognosis regardless of their IGHV mutation status or cytogenetic risk group. In keeping with this finding, telomere dysfunction was the dominant variable in multivariate analysis. Taken together, this study provides compelling evidence for the use of high-resolution telomere length analysis coupled with a definition of telomere dysfunction in the prognostic assessment of CLL.
In Ralstonia sp. strain U2, the nag catabolic genes, which encode the enzymes for the pathway that catabolizes naphthalene via the alternative ring cleavage gentisate pathway, are transcribed as an operon under the same promoter. nagR, which encodes a LysR-type transcriptional regulator, is divergently transcribed compared to the nag catabolic genes. A 4-bp frameshift deletion in nagR demonstrated that NagR is required for expression of the nag operon. The transcriptional start of the nag operon was mapped, and a putative ؊10, ؊3570 -type promoter binding site was identified. Further upstream, a site proximal to the promoter was identified as a site that has bases which have been found to be conserved in the activator-binding motif of other naphthalene pathways. Transcriptional fusion studies demonstrated that NagR regulates the expression of the nag operon positively in the presence of salicylate and to a lesser extent in the presence of 2-nitrobenzoate. Mutation of the LysR-type activator-binding motif in the nag promoter-proximal region resulted in a loss of inducibility of a lacZ reporter gene transcriptionally fused to nagAa, the first gene of the operon. However, other mutations in the region increased the effectiveness of salicylate as an inducer.The nag genes of Ralstonia sp. strain U2 code for the enzymes of the alternative pathway for the catabolism of naphthalene, which converts naphthalene to fumarate and pyruvate via salicylate (2-hydroxybenzoate) and gentisate (2,5-dihydroxybenzoate), and they are organized in a continuous sequence of adjacent genes (8,28,29). This is in contrast to the classical naphthalene pathway enzymes, which are encoded on two separate operons, the upper-pathway operon (genes nahAa to nahF) for the conversion of naphthalene to salicylate and the lower-pathway (or meta-pathway) operon (genes nahG to nahM) for the conversion of salicylate to acetyl coenzyme A and pyruvate via catechol (5, 27).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.