This study investigated the association of copper levels and monocyte plasticity between M1 (CD14+ CD16−) and M2 (CD14− CD16++) phenotypes. Five samples of female bovine PBMCs were incubated in 0, 4, 8 and 16 μM copper and stimulated (PPD-A, TLR- 2 ligand (Pam3CSK4), or media alone) before they were washed and stained for cell surface expression analysis by flow cytometry. M1 function was measured through nitric oxide production using a Griess assay. Flow cytometry analysis showed a significant reduction in viability with increased copper (p < 0.001). Increasing copper had a significant impact on CD14 expression (p = 0.026) and in cows older than 4 years copper levels positively affected CD14 expression (p = 0.001), whereas in animals of four years or younger, Cu did not affect the CD14 expression (p = 0.701 and 0.939, respectively). CD14 expression affected both CD16 expression and NO production. For CD16 expression, there was a further significant negative effect of copper levels in cows older than 4 years, NO was not affected by varying copper levels. In our small sample, monocytes in the presence of a higher copper environment showed a stronger M1 support for better cellular immunity which might contain intracellular infections more effectively. To test this, a randomised clinical trial will be required to determine whether copper supplementation could prevent progression to Johne’s disease in MAP infected cows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.