Autosomal recessive loss-of-function mutations within the PARK2 gene functionally inactivate the E3 ubiquitin ligase parkin, resulting in neurodegeneration of catecholaminergic neurons and a familial form of Parkinson disease. Current evidence suggests both a mitochondrial function for parkin and a neuroprotective role, which may in fact be interrelated. The antiapoptotic effects of parkin have been widely reported, and may involve fundamental changes in the threshold for apoptotic cytochrome c release, but the substrate(s) involved in parkin dependent protection had not been identified. Here, we demonstrate the parkin-dependent ubiquitination of endogenous Bax comparing primary cultured neurons from WT and parkin KO mice and using multiple parkin-overexpressing cell culture systems. The direct ubiquitination of purified Bax was also observed in vitro following incubation with recombinant parkin. We found that parkin prevented basal and apoptotic stressinduced translocation of Bax to the mitochondria. Moreover, an engineered ubiquitination-resistant form of Bax retained its apoptotic function, but Bax KO cells complemented with lysine-mutant Bax did not manifest the antiapoptotic effects of parkin that were observed in cells expressing WT Bax. These data suggest that Bax is the primary substrate responsible for the antiapoptotic effects of parkin, and provide mechanistic insight into at least a subset of the mitochondrial effects of parkin.Parkinson's disease | apoptosis | neuroprotection | mitophagy P arkinson disease (PD) is a neurodegenerative disorder that affects 1-3% of the population over the age of 65 years (1). The symptoms include tremor, rigidity, bradykinesia, and postural instability. These physical characteristics are caused by the progressive degeneration of dopaminergic neurons of the substantia nigra pars compacta and, to a lesser extent, the catecholaminergic neurons of the locus coeruleus. Although most cases of PD are sporadic in nature, a small number of genes are responsible for the rare familial forms of PD (2). Loss-of-function mutations within the PARK2 locus, which encodes the protein parkin, are the most common cause of autosomal recessive PD (3).Parkin is a 465-amino acid protein that is expressed in multiple tissues and functions as an E3 ubiquitin ligase (4). Ubiquitination of substrates is a tightly regulated process, requiring the combined activity of three enzymes: an E1 ubiquitin-activating enzyme, an E2 ubiquitin conjugating enzyme, and an E3 ubiquitin ligase (5). E3 ubiquitin ligases are responsible for substrate recognition, and as such contribute the specificity of a ubiquitin reaction. Defects in parkin-mediated ubiquitination may result in the failure to target specific substrates for degradation, leading to accumulation of potentially toxic proteins and consequent cell death (6). Parkin is widely neuroprotective (7); however, many of the putative parkin substrates reported to date are not thought to directly mediate toxicity in such a simple fashion [reviewed elsewhere (8...
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, affecting 1–3% of the population over 65. Mutations in the ubiquitin E3 ligase parkin are the most common cause of autosomal recessive PD. The parkin protein possesses potent cell-protective properties and has been mechanistically linked to both the regulation of apoptosis and the turnover of damaged mitochondria. Here, we explored these two functions of parkin and the relative scale of these processes in various cell types. While biochemical analyses and subcellular fractionation were sufficient to observe robust parkin-dependent mitophagy in immortalized cells, higher resolution techniques appear to be required for primary culture systems. These approaches, however, did affirm a critical role for parkin in the regulation of apoptosis in primary cultured neurons and all other cells studied. Our prior work demonstrated that parkin-dependent ubiquitination of endogenous Bax inhibits its mitochondrial translocation and can account for the anti-apoptotic effects of parkin. Having found a central role for parkin in the regulation of apoptosis, we further investigated the parkin-Bax interaction. We observed that the BH3 domain of Bax is critical for its recognition by parkin, and identified two lysines that are crucial for parkin-dependent regulation of Bax translocation. Last, a disease-linked mutation in parkin failed to influence Bax translocation to mitochondria after apoptotic stress. Taken together, our data suggest that regulation of apoptosis by the inhibition of Bax translocation is a prevalent physiological function of parkin regardless of the kind of cell stress, preventing overt cell death and supporting cell viability during mitochondrial injury and repair.
Fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is a multifunctional RNA/DNA-binding protein that is pathologically associated with cancer and neurodegeneration. To gain insight into the vital functions of FUS and how a loss of FUS function impacts cellular homeostasis, FUS expression was reduced in different cellular models through RNA interference. Our results show that a loss of FUS expression severely impairs cellular proliferation and leads to an increase in phosphorylated histone H3, a marker of mitotic arrest. A quantitative proteomics analysis performed on cells undergoing various degrees of FUS knockdown revealed protein expression changes for known RNA targets of FUS, consistent with a loss of FUS function with respect to RNA processing. Proteins that changed in expression as a function of FUS knockdown were associated with multiple processes, some of which influence cell proliferation including cell cycle regulation, cytoskeletal organization, oxidative stress and energy homeostasis. FUS knockdown also correlated with increased expression of the closely related protein EWS (Ewing's sarcoma). We demonstrate that the maladaptive phenotype resulting from FUS knockdown is reversible and can be rescued by re-expression of FUS or partially rescued by the small-molecule rolipram. These results provide insight into the pathways and processes that are regulated by FUS, as well as the cellular consequences for a loss of FUS function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.