Cortical injury, such as injuries after stroke or age-related ischemic events, triggers a cascade of degeneration accompanied by inflammatory responses that mediate neurological deficits. Therapeutics that modulate such neuroinflammatory responses in the aging brain have the potential to reduce neurological dysfunction and promote recovery. Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) are lipidbound, nanoscale vesicles that can modulate inflammation and enhance recovery in rodent stroke models. We recently assessed the efficacy of intravenous infusions of MSC-EVs (24-h and 14-days post-injury) as a treatment in aged rhesus monkeys (Macaca mulatta) with cortical injury that induced impairment of fine motor function of the hand. Aged monkeys treated with EVs after injury recovered motor function more rapidly and more fully than aged monkeys given a vehicle control. Here, we describe EV-mediated inflammatory changes using histological assays to quantify differences in markers of neuroinflammation in brain tissue between EV and vehicle-treated aged monkeys. The activation status of microglia, the innate macrophages of the brain, is critical to cell fate after injury. Our findings demonstrate that EV treatment after injury is associated with greater densities of ramified, homeostatic microglia, along with reduced pro-inflammatory microglial markers. These findings are consistent with a phenotypic switch of inflammatory hypertrophic microglia towards anti-inflammatory, homeostatic functions, which was correlated with enhanced functional recovery. Overall, our data suggest that EVs reduce neuroinflammation and shift microglia towards restorative functions. These findings demonstrate the therapeutic potential of MSC-derived EVs for reducing neuroinflammation after cortical injury in the aged brain.
Background: Exosomes from mesenchymal stromal cells (MSCs) are endosome-derived vesicles that have been shown to enhance functional recovery in rodent models of stroke. Objective: Building on these findings, we tested exosomes as a treatment in monkeys with cortical injury. Methods: After being trained on a task of fine motor function of the hand, monkeys received a cortical injury to the hand representation in primary motor cortex. Twenty-four hours later and again 14 days after injury, monkeys received exosomes or vehicle control. Recovery of motor function was followed for 12 weeks. Results: Compared to monkeys that received vehicle, exosome treated monkeys returned to pre-operative grasp patterns and latency to retrieve a food reward in the first three-five weeks of recovery. Conclusions: These results provide evidence that in monkeys exosomes delivered after cortical injury enhance recovery of motor function.
Studies of both humans and non-human primates have demonstrated that aging is typically characterized by a decline in cognition that can occur as early as the fifth decade of life. Age-related changes in working memory are particularly evident and mediated, in part, by the prefrontal cortex, an area known to evidence age-related changes in myelin that is attributed to inflammation. In recent years, several nutraceuticals, including curcumin, by virtue of their anti-inflammatory and antioxidant effects, have received considerable attention as potential treatments for age-related cognitive decline and inflammation. Accordingly, we assessed for the first time in a non-human primate model of normal aging the efficacy of dietary intervention using the natural phenol curcumin to ameliorate the effects of aging on spatial working and recognition memory. Results revealed that monkeys receiving daily administration of curcumin over 14-18 months demonstrated a greater improvement in performance on repeated administration of a task of spatial working memory compared to monkeys that received a control substance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.