Although prediction of class membership from observed variables in latent class analysis is well understood, predicting an observed distal outcome from latent class membership is more complicated. A flexible model-based approach is proposed to empirically derive and summarize the class-dependent density functions of distal outcomes with categorical, continuous, or count distributions. A Monte Carlo simulation study is conducted to compare the performance of the new technique to two commonly used classify-analyze techniques: maximum-probability assignment and multiple pseudo-class draws. Simulation results show that the model-based approach produces substantially less biased estimates of the effect compared to either classify-analyze technique, particularly when the association between the latent class variable and the distal outcome is strong. In addition, we show that only the model-based approach is consistent. The approach is demonstrated empirically: latent classes of adolescent depression are used to predict smoking, grades, and delinquency. SAS syntax for implementing this approach using PROC LCA and a corresponding macro are provided.
Despite recent methodological advances in latent class analysis (LCA) and a rapid increase in its application in behavioral research, complex research questions that include latent class variables often must be addressed by classifying individuals into latent classes and treating class membership as known in a subsequent analysis. Traditional approaches to classifying individuals based on posterior probabilities are known to produce attenuated estimates in the analytic model. We propose the use of a more inclusive LCA to generate posterior probabilities; this LCA includes additional variables present in the analytic model. A motivating empirical demonstration is presented, followed by a simulation study to assess the performance of the proposed strategy. Results show that with sufficient measurement quality or sample size, the proposed strategy reduces or eliminates bias.
High rates of comorbidity are observed between internalizing and externalizing problems, yet the developmental dynamics of comorbid symptom presentations are not yet well understood. This study explored the developmental course of latent profiles of internalizing and externalizing symptoms across kindergarten, 1st, and 2nd grade. The sample consisted of 336 children from an urban, low-income community, selected based on relatively high (61%) or low (39%) aggressive/oppositional behavior problems at school entry (64% male; 70% African American, 20% Hispanic). Teachers reported on children’s symptoms in each year. An exploratory latent profile analysis of children’s scores on aggression/oppositionality, hyperactivity/inattention, anxiety, and social withdrawal symptom factors revealed 4 latent symptom profiles: comorbid (48% of the sample in each year), internalizing (19–23%), externalizing (21–22%), and well-adjusted (7–11%). The developmental course of these symptom profiles was examined using a latent transition analysis, which revealed remarkably high continuity in the comorbid symptom profile (89% from one year to the next) and moderately high continuity in both the internalizing and externalizing profiles (80% and 71%, respectively). Internalizing children had a 20% probability of remitting to the well-adjusted profile by the following year, whereas externalizing children had a 25% probability of transitioning to the comorbid profile. These results are consistent with the hypothesis that a common vulnerability factor contributes to developmentally stable internalizing-externalizing comorbidity, while also suggesting that some children with externalizing symptoms are at risk for subsequently accumulating internalizing symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.