Understanding the mechanisms limiting the distributions of organisms is necessary for predicting changes in community composition along habitat gradients. In many areas of the USA, land originally cleared for agriculture has been undergoing a process of reforestation, creating a gradient of canopy cover. For small temporary wetlands, this gradient can alter abiotic conditions and influence the resource base of wetland food webs by affecting litter inputs. As distributions of amphibians and many other temporary wetland taxa correlate with canopy cover, we experimentally manipulated shade levels and litter types in pond mesocosms to explore mechanisms limiting species performance in wetlands with canopy cover. Most differences between ponds were mediated by litter type rather than direct effects of shading. Although all three amphibian species tested are open-canopy specialists, spring peepers were the only species to show decreased survival in shaded ponds. Pond litter type generally had strong effects on growth and development rates, with tadpoles of two species in grass litter ponds growing to twice the size of, and metamorphosing 7 days earlier than, those in leaf litter ponds. Contrary to our initial hypothesis, shade level and litter type showed very few significant interactions. Our results indicate that the effects of shading cannot be considered in isolation of vegetation changes in pond basins when evaluating the effects of forest succession on temporary pond communities.
Low levels of agricultural herbicides often contaminate surface water and might persist throughout the growing season, potentially acting as stressors on aquatic organisms. Although low-dose, chronic exposures to agrochemicals are likely common for many nontarget organisms, studies addressing these effects using end-use herbicide formulations are rare. We exposed three common species of tadpoles to conservative levels of atrazine, S-metolachlor, and glyphosate end-use herbicide formulations throughout the larval period to test for survival differences or life-history trait alterations. Exposure to the glyphosate product Roundup WeatherMax at 572 ppb glyphosate acid equivalents (a.e.) resulted in 80% mortality of western chorus frog tadpoles, likely as a result of a unique surfactant formulation. Exposure to WeatherMax or Roundup Original Max at 572 ppb a.e. also lengthened the larval period for American toads. Chronic atrazine and S-metolachlor exposures induced no significant negative effects on survival, mass at metamorphosis, or larval period length at the levels tested. These results highlight the importance of explicitly tying chronic tests to the natural environment and considering contributions of surfactant/adjuvant components to end-use formulation toxicities, even between very similar products.
1. Previous research shows that canopy-associated shifts from an algal to a detritus-based food web can affect anuran tadpoles negatively. This may not be true of salamander larvae, however, because they are predators. 2. To investigate the influence of canopy cover on the survival and growth of salamanders, and on the subsequent export of biomass from ponds, we conducted a mesocosm experiment examining effects of shading (high or low) and litter (leaves or grass) on Ambystoma maculatum (a forest specialist) and A. texanum (a habitat generalist). Additionally, we reanalysed data from Williams, Rittenhouse & Semlitsch (2008) to examine the effects of shading and litter on biomass export of three anurans: Rana sphenocephala, Pseudacris crucifer and Hyla versicolor. 3. In contrast to previous studies, we found that salamanders performed better in mesocosms with the characteristics of closed canopy ponds (high shade and leaf litter), which resulted in a greater export of biomass. Salamanders grew larger under closed canopy conditions, probably because of differences in prey abundance among treatments. Anurans responded differently to canopy cover than caudates. The biomass export of R. sphenocephala and P. crucifer was reduced under closed canopy conditions (although differently affected by litter and shading), while the biomass of H. versicolor was not affected. 4. This and other studies suggest that changes in canopy cover may induce a shift in the amphibians emerging from ponds, from primarily anurans in open canopy ponds to primarily salamanders in closed canopy ponds. Additional multispecies studies will determine whether these trends hold true for more diverse amphibian assemblages. Further investigation into the effects of canopy cover on salamanders will be important for understanding aquatic-terrestrial linkages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.