A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here, we show that the space of shapes adopted by the nematode Caenorhabditis elegans is low dimensional, with just four dimensions accounting for 95% of the shape variance. These dimensions provide a quantitative description of worm behavior, and we partially reconstruct “equations of motion” for the dynamics in this space. These dynamics have multiple attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively “steering” the worm in real time.
Highlights d Discovery of 107 mutations in the RNA helicase DDX3X causing cortical malformations d Clinical severity is linked to reduced helicase activity and RNA-protein granules d Ddx3x is required in neural progenitors to produce cortical neurons during development d Severe missense mutations cause polymicrogyria and impair translation of targets
Since 2012, the United States has experienced a biennial spike in pediatric acute flaccid myelitis (AFM). 1-6 Epidemiologic evidence suggests non-polio enteroviruses (EVs) are a potential etiology, yet EV RNA is rarely detected in cerebrospinal fluid (CSF). 2 We interrogated CSF from children with AFM (n=42) and pediatric other neurologic disease controls (n=58) for intrathecal anti-viral antibodies using a phage display library expressing 481,966 overlapping peptides derived from all known vertebrate and arboviruses (VirScan). We also performed metagenomic next-generation sequencing (mNGS) of AFM CSF RNA (n=20 cases), both unbiased and with targeted enrichment for EVs. Using VirScan, the only viral family significantly enriched by the CSF of AFM cases relative to controls was Picornaviridae, with the most enriched Picornaviridae peptides belonging to the genus Enterovirus (n=29/42 cases versus 4/58 controls). EV VP1 ELISA confirmed this finding (n=22/26 cases versus 7/50 controls). mNGS did not detect additional EV RNA. Despite rare detection of EV RNA, pan-viral serology identified frequently high levels of CSF EV-specific antibodies in AFM compared to controls, providing further evidence for a causal role of non-polio EVs in AFM.
De novo germline mutations in the RNA helicase DDX3X account for 1-3% of unexplained intellectual disability (ID) cases in females, and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here we use human and mouse genetics, and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n=78), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcomes. We show that Ddx3x controls cortical development by regulating neuronal generation and migration. Severe DDX3X missense mutations profoundly disrupt RNA helicase activity and induce ectopic RNA-protein granules and aberrant translation in neural progenitors and neurons. Together, our study demonstrates novel mechanisms underlying DDX3X syndrome, and highlights roles for RNA-protein aggregates in the pathogenesis of neurodevelopmental disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.