Fisheries sustainability is recognized to have four pillars: ecological, economic, social (including cultural) and institutional (or governance). Although international agreements, and legislation in many jurisdictions, call for implementation of all four pillars of sustainability, the social, economic and institutional aspects (i.e., the “human dimensions”) have not been comprehensively and collectively addressed to date. This study describes a framework for comprehensive fisheries evaluation developed by the Canadian Fisheries Research Network (CFRN) that articulates the full spectrum of ecological, economic, social and institutional objectives required under international agreements, together with candidate performance indicators for sustainable fisheries. The CFRN framework is aimed at practical fisheries evaluation and management and has a relatively balanced distribution of elements across the four pillars of sustainability relative to 10 alternative management decision support tools and indicator scorecards, which are heavily focused on ecological and economic aspects. The CFRN framework has five immediate uses: (a) It can serve as a logic frame for defining management objectives; (b) it can be used to define alternate management options to achieve given objectives; (c) it can serve as a tool for comparing management scenarios/options in decision support frameworks; (d) it can be employed to create a report card for comprehensive fisheries management evaluation; and (e) it is a tool for practical implementation of an integrated social–ecological system approach.
Reptile populations are in decline globally, with total reptile abundance halving in the past half century, and approximately a fifth of species currently threatened with extinction. Research on reptile distributions, population trends, and trophic interactions can greatly improve the accuracy of conservation listings and planning for species recovery, but data deficiency is an impediment for many species. Environmental DNA (eDNA) can detect species and measure community diversity at diverse spatio‐temporal scales, and is especially useful for detection of elusive, cryptic, or rare species, making it potentially very valuable in herpetology. We aim to summarize the utility of eDNA as a tool for informing reptile conservation and management and discuss the benefits and limitations of this approach. A literature review was conducted to collect all studies that used eDNA and focus on reptile ecology, conservation, or management. Results of the literature search are summarized into key discussion points, and the review also draws on eDNA studies from other taxa to highlight methodological challenges and to identify future research directions. eDNA has had limited application to reptiles, relative to other vertebrate groups, and little use in regions with high species richness. eDNA techniques have been more successfully applied to aquatic reptiles than to terrestrial reptiles, and most (64%) of studies focused on aquatic habitats. Two of the four reptilian orders dominate the existing eDNA studies (56% Testudines, 49% Squamata, 5% Crocodilia, 0% Rhynchocephalia). Our review provides direction for the application of eDNA as an emerging tool in reptile ecology and conservation, especially when it can be paired with traditional monitoring approaches. Technologies associated with eDNA are rapidly advancing, and as techniques become more sensitive and accessible, we expect eDNA will be increasingly valuable for addressing key knowledge gaps for reptiles.
Leatherback sea turtles (Dermochelys coriacea) migrate to temperate Canadian Atlantic waters to feed on gelatinous zooplankton ('jellyfish') every summer. However, the spatiotemporal connection between predator foraging and prey-field dynamics has not been studied at the large scales over which these migratory animals occur. We use 8903 tows of groundfish survey jellyfish bycatch data between 2006-2017 to reveal spatial jellyfish hot spots, and matched these data to satellite-telemetry leatherback data over time and space. We found highly significant overlap of jellyfish and leatherback distribution on the Scotian Shelf (r = 0.89), moderately strong correlations of jellyfish and leatherback spatial hot spots in the Gulf of St. Lawrence (r = 0.59), and strong correlations in the Bay of Fundy (r = 0.74), which supports much lower jellyfish density. Over time, jellyfish bycatch data revealed a slight northward range shift in the Gulf of St. Lawrence, consistent with gradual warming of these waters. Two-stage generalized linear modelling corroborated that sea surface temperature, year, and region were significant predictors of jellyfish biomass, suggesting a climate signal on jellyfish distribution, which may shift leatherback critical feeding habitat over time. These findings are useful in predicting dynamic habitat use for endangered leatherback turtles, and can help to anticipate large-scale changes in their distribution in response to climate-related changes in prey availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.