Vaccinia virus membrane biogenesis requires the A14 and A17 proteins. We show here that both proteins can associate with membranes co-but not posttranslationally, and we perform a structure function analysis of A14 and A17 using inducible recombinants. In the absence of A14, electron-dense virosomes and distinct clusters of small vesicles accumulate; in the absence of A17, small vesicles form a corona around the virosomes. When the proteins are induced at 12 h postinfection (hpi), crescents appear at the periphery of the electron-dense virosomes, with the accumulated vesicles likely contributing to their formation. A variety of mutant alleles of A14 and A17 were tested for their ability to support virion assembly. For A14, biologically important motifs within the N-terminal or central loop region affected crescent maturation and the immature virion (IV)¡mature virion (MV) transition. For A17, truncation or mutation of the N terminus of A17 engendered a phenotype consistent with the N terminus of A17 recruiting the D13 scaffold protein to nascent membranes. When N-terminal processing was abrogated, virions attempted to undergo the IV-to-MV transition without removing the D13 scaffold and were therefore noninfectious and structurally aberrant. Finally, we show that A17 is phosphorylated exclusively within the C-terminal tail and that this region is a direct substrate of the viral F10 kinase. In vivo, the biological competency of A17 was reduced by mutations that prevented its serine-threonine phosphorylation and restored by phosphomimetic substitutions. Precleavage of the C terminus or abrogation of its phosphorylation diminished the IV¡MV maturation; a block to cleavage spared virion maturation but compromised the yield of infectious virus. P oxviruses are complex DNA viruses that are ubiquitous in nature; the orthopoxvirus family includes variola virus, the etiologic agent of smallpox, and the closely related monkeypox virus, which is endemic in Africa and also causes a severe, acute febrile illness (1, 2). The prototypic poxvirus for experimental study is the closely related vaccinia virus, which has played an eminent role in public health as the vaccine strain used in the successful eradication of smallpox. Poxviruses are unique among DNA viruses in that they replicate exclusively in the cytoplasm of infected cells (2). This physical autonomy is enabled by the presence of ϳ200 genes in the viral genome that encode the machinery for virion entry, gene expression, genome replication and maturation, virion assembly and maturation, and virion egress. The assembly of nascent virions is one of the most unique facets of poxviral infection (3). Unlike most other enveloped viruses, vaccinia virus does not acquire its delimiting membrane by budding into an organelle or through the plasma membrane. Instead, the membrane develops within the cytoplasm, seeded by small patches of membrane that grow into characteristic crescents. As these nascent membrane sheets develop, they engulf virosomal proteins destined for encapsidat...
The previously unstudied vaccinia virus gene I2L is conserved in all orthopoxviruses. We show here that the 8-kDa I2 protein is expressed at late times of infection, is tightly associated with membranes, and is encapsidated in mature virions. We have generated a recombinant virus in which I2 expression is dependent upon the inclusion of tetracycline in the culture medium. In the absence of I2, the biochemical events of the viral life cycle progress normally, and virion morphogenesis culminates in the production of mature virions. However, these virions show an ϳ400-fold reduction in specific infectivity due to an inability to enter target cells. Several proteins that have been previously identified as components of an essential entry/fusion complex are present at reduced levels in I2-deficient virions, although other membrane proteins, core proteins, and DNA are encapsidated at normal levels. A preliminary structure/ function analysis of I2 has been performed using a transient complementation assay: the C-terminal hydrophobic domain is essential for protein stability, and several regions within the N-terminal hydrophilic domain are essential for biological competency. I2 is thus yet another component of the poxvirus virion that is essential for the complex process of entry into target cells.Variola virus and vaccinia virus are perhaps the most notorious members of the poxvirus family: the former is the etiological agent of smallpox, and the latter has long been used as the vaccine to protect against smallpox. Poxviruses are the only DNA viruses whose life cycle is restricted to the cytoplasm of infected cells; the large repertoire of proteins encoded by the ϳ200-kb DNA genome of these viruses affords them a high degree of genetic and physical autonomy from host cells. The virions themselves are ϳ250 by 350 nm in size and contain ϳ75 proteins which localize to a delimiting and protein-rich membrane, two proteinaceous lateral bodies of unknown function, and a central core (9). The core, in addition to its numerous structural components, contains the viral genome and a transcriptional apparatus that is responsible for mediating early gene expression immediately after virion binding and entry. The binding of virions to target cells involves interactions between several virion membrane proteins (A27, D8, and H3) and glycosaminoglycans (GAGs) on the target cell (4,5,7,(21)(22)(23)29) and is also presumed to involve higher-affinity interactions between as-yet-unidentified virion proteins and cellular receptors. Subsequent release of the virion core into the cytoplasm can occur either by direct fusion of the virion and plasma membranes or by engulfment of the intact virion followed by pH-dependent fusion events which result in the release of the core from the endocytic compartment and its deposition in the cytoplasm (4,31,51,54).Approximately 90 genes are conserved within the genomes of all chordopoxviruses and are therefore viewed as encoding the repertoire of proteins essential for completion of the viral life cycle (...
Author contributions S.N. and W.G. conceived and designed the overall project. S.S. and C.I.U. assisted with selecting the family, gathering the clinical histories and collecting DNA samples under human subject IRB-approved protocols. S.N., W.G. and I.L. designed the WGS analysis. I.L. performed the WGS analysis and candidate variant filtering. S.N., J.W., A.J.K., J.E.H., A.G.C. and J.H. designed and generated the zebrafish rabl3 mutant lines and performed the cancer studies. J.R.H. and S.N. performed zebrafish histology preparation and analysis. J.D.M. performed and analyzed the AP-MS experiments and CompPASS suite protein interactomics. S.N., W.G. and C.W. conceived and designed the in vitro immunoprecipitation, prenylation assays and HEK293T cell proliferation assays, and P.G., A.B., E.L. and B.U. performed these experiments. S.N. and O.M. designed and performed RASless MEF experiments. J.W.P. performed protein structural modeling. B.C.J. and C.A.F. designed and performed purification of recombinant protein. J.A.P., S.G. and J.D.M. assisted with mass spectrometry analysis. Y.H. assisted with RNA-seq data analysis. M.B.G. performed the zebrafish μCT and bone histomorphometric analysis. O.M., X.W. and J.D.M. provided assistance with tissue culture experiments. C.A.C. and J.A.R. provided analysis of clinical exome sequencing data. C.A.C. and I.L. provided analysis of variants in the Exome Aggregation Consortium.
The 70-amino-acid A13L protein is a component of the vaccinia virus membrane. We demonstrate here that the protein is expressed at late times of infection, undergoes phosphorylation at a serine residue(s), and becomes encapsidated in a monomeric form. Phosphorylation is dependent on Ser40, which lies within the proline-rich motif SPPP. Because phosphorylation of the A13 protein is only minimally affected by disruption of the viral F10 kinase or H1 phosphatase, a cellular kinase is likely to be involved. We generated an inducible recombinant in which A13 protein expression is dependent upon the inclusion of tetracycline in the culture medium. Repression of the A13L protein spares the biochemical progression of the viral life cycle but arrests virion morphogenesis. Virion assembly progresses through the formation of immature virions (IVs); however, these virions do not acquire nucleoids, and DNA crystalloids accumulate in the cytoplasm. Further development into intracellular mature virions is blocked, causing a 1,000-fold decrease in the infectious virus yield relative to that obtained in the presence of the inducer. We also determined that the temperature-sensitive phenotype of the viral mutant Cts40 is due to a nucleotide transition within the A13L gene that causes a Thr 48 3Ile substitution. This substitution disrupts the function of the A13 protein but does not cause thermolability of the protein; at the nonpermissive temperature, virion morphogenesis arrests at the stage of IV formation. The A13L protein, therefore, is part of a newly recognized group of membrane proteins that are dispensable for the early biogenesis of the virion membrane but are essential for virion maturation.
Vaccinia virus, the prototypic poxvirus, efficiently and faithfully replicates its ∼200-kb DNA genome within the cytoplasm of infected cells. This intracellular localization dictates that vaccinia virus encodes most, if not all, of its own DNA replication machinery. Included in the repertoire of viral replication proteins is the I3 protein, which binds to single-stranded DNA (ssDNA) with great specificity and stability and has been presumed to be the replicative ssDNA binding protein (SSB). We substantiate here that I3 colocalizes with bromodeoxyuridine (BrdU)-labeled nascent viral genomes and that these genomes accumulate in cytoplasmic factories that are delimited by membranes derived from the endoplasmic reticulum. Moreover, we report on a structure/function analysis of I3 involving the isolation and characterization of 10 clustered charge-to-alanine mutants. These mutants were analyzed for their biochemical properties (self-interaction and DNA binding) and biological competence. Three of the mutant proteins, encoded by the I3 alleles I3-4, -5, and -7, were deficient in self-interaction and unable to support virus viability, strongly suggesting that the multimerization of I3 is biologically significant. Mutant I3-5 was also deficient in DNA binding. Additionally, we demonstrate that small interfering RNA (siRNA)-mediated depletion of I3 causes a significant decrease in the accumulation of progeny genomes and that this reduction diminishes the yield of infectious virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.