Background: Plasmalemmal vesicle associated protein-1 (PV-1) is selectively expressed in human brain microvascular endothelial cells derived from clinical specimens of primary and secondary malignant brain tumors, cerebral ischemia, and other central nervous system (CNS) diseases associated with blood-brain barrier breakdown. In this study, we characterize the murine CNS expression pattern of PV-1 to determine whether localized PV-1 induction is conserved across species and disease state.
Malignant primary glial and secondary metastatic brain tumors represent distinct pathological entities. Nevertheless, both tumor types induce profound angiogenic responses in the host brain microvasculature that promote tumor growth. We hypothesized that primary and metastatic tumors induce similar microvascular changes that could function as conserved angiogenesis based therapeutic targets. We previously isolated glioma endothelial marker genes (GEMs) that were selectively upregulated in the microvasculature of proliferating glioblastomas. We sought to determine whether these genes were similarly induced in the microvasculature of metastatic brain tumors. RT-PCR and quantitative RT-PCR were used to screen expression levels of 20 candidate GEMs in primary and metastatic clinical brain tumor specimens. Differentially regulated GEMs were further evaluated by immunohisto-chemistry or in situ hybridization to localize gene expression using clinical tissue microarrays. Thirteen GEMs were upregulated to a similar degree in both primary and metastatic brain tumors. Most of these genes localize to the cell surface (CXCR7, PV1) or extracellular matrix (COL1A1, COL3A1, COL4A1, COL6A2, MMP14, PXDN) and were selectively expressed by the microvasculature. The shared expression profile between primary and
Background: Epidemiological and animal studies indicate that maternal exposure to pollutants that bind the aryl hydrocarbon receptor (AhR) correlates with poorer ability to combat respiratory infection and lower antibody levels in the offspring. These observations point to an impact on CD4+ T cells. Yet, the consequence of developmental exposure to AhR ligands on the activation and differentiation of CD4+ T cells has not been directly examined.Objectives: Our goal was to determine whether maternal exposure to an AhR ligand directly alters CD4+ T cell differentiation and function later in life.Methods: C57BL/6 mice were exposed to a prototypical AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), in utero and via suckling. We then measured CD4+ T-cell activation and differentiation into distinct effector populations in adult offspring that were infected with influenza A virus (IAV). Reciprocal adoptive transfers were used to define whether modifications in CD4+ T-cell responses resulted from direct effects of developmental TCDD exposure on CD4+ T cells.Results: Developmental exposure skewed CD4+ T-cell responses to IAV infection. We observed fewer virus-specific, activated CD4+ T cells and a reduced frequency of conventional CD4+ effector-cell subsets. However, there was an increase in regulatory CD4+ T cells. Direct effects of AhR activation on CD4+ T cells resulted in impaired differentiation into conventional effector subsets; this defect was transferred to mice that had not been developmentally exposed to TCDD.Conclusions: Maternal exposure to TCDD resulted in durable changes in the responsive capacity and differentiation of CD4+ T cells in adult C57BL/6 mice.Citation: Boule LA, Winans B, Lawrence BP. 2014. Effects of developmental activation of the AhR on CD4+ T-cell responses to influenza virus infection in adult mice. Environ Health Perspect 122:1201–1208; http://dx.doi.org/10.1289/ehp.1408110
There is now compelling evidence that developmental exposure to chemicals from our environment contributes to disease later in life, with animal models supporting this concept in reproductive, metabolic, and neurodegenerative diseases. In contrast, data regarding how developmental exposures impact the susceptibility of the immune system to functional alterations later in life are surprisingly scant. Given that the immune system forms an integrated network that detects and destroys invading pathogens and cancer cells, it provides the body's first line of defense. Thus, the consequences of early-life exposures that reduce immune function are profound. This review summarizes available data for pollutants such as cigarette smoke and dioxin-like compounds, which consistently support the idea that developmental exposures critically impact the immune system. These findings suggest that exposure to common chemicals from our daily environment represent overlooked contributors to the fact that infectious diseases remain among the top five causes of death worldwide.
Successfully fighting infection requires a properly tuned immune system. Recent epidemiological studies link exposure to pollutants that bind the aryl hydrocarbon receptor (AHR) during development with poorer immune responses later in life. Yet, how developmental triggering of AHR durably alters immune cell function remains unknown. Using a mouse model, we show that developmental activation of AHR leads to long-lasting reduction in the response of CD8+ T cells during influenza virus infection, cells critical for resolving primary infection. Combining genome-wide approaches, we demonstrate that developmental activation alters DNA methylation and gene expression patterns in isolated CD8+ T cells prior to and during infection. Altered transcriptional profiles in CD8+ T cells from developmentally exposed mice reflect changes in pathways involved in proliferation and immunoregulation, with an overall pattern that bears hallmarks of T cell exhaustion. Developmental exposure also changed DNA methylation across the genome, but differences were most pronounced following infection, where we observed inverse correlation between promoter methylation and gene expression. This points to altered regulation of DNA methylation as one mechanism by which AHR causes durable changes in T cell function. Discovering that distinct gene sets and pathways were differentially changed in developmentally exposed mice prior to and after infection further reveals that the process of CD8+ T cell activation is rendered fundamentally different by early life AHR signaling. These findings reveal a novel role for AHR in the developing immune system: regulating DNA methylation and gene expression as T cells respond to infection later in life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.