The plant availability of manure nitrogen (N) is influenced by manure composition in the year of application whereas some studies indicate that the legacy effect in following years is independent of the composition. The plant availability of N in pig and cattle slurries with variable contents of particulate matter was determined in a 3-year field study. We separated cattle and a pig slurry into liquid and solid fractions by centrifugation. Slurry mixtures with varying proportions of solid and liquid fraction were applied to a loamy sand soil at similar NH4+-N rates in the first year. Yields and N offtake of spring barley and undersown perennial ryegrass were compared to plots receiving mineral N fertilizer. The first year N fertilizer replacement value (NFRV) of total N in slurry mixtures decreased with increasing proportion of solid fraction. The second and third season NFRV averaged 6.5% and 3.8% of total N, respectively, for cattle slurries, and 18% and 7.5% for pig slurries and was not related to the proportion of solid fraction. The estimated net N mineralization of residual organic N increased nearly linearly with growing degree days (GDD) with a rate of 0.0058%/GDD for cattle and 0.0116%/GDD for pig slurries at 2000–5000 GDD after application. In conclusion NFRV of slurry decreased with increasing proportion of solid fraction in the first year. In the second year, NFRV of pig slurry N was significantly higher than that of cattle slurry N and unaffected by proportion between solid and liquid fraction.
Appropriate soil amendments may increase plant available water and crop yields on coarse sandy soils under drought conditions. In this study, we applied straw ash or straw biochar from gasification to a Danish coarse sandy subsoil to assess the effects on soil water retention, evapotranspiration and crop yields. Spring barley (2016, 2017) and winter wheat (2018) were grown over three years in columns containing 25cm of organic matter‐rich topsoil, 80 cm of amended coarse sandy soil (1.5%, 3%, 6% wt. ash or 1% wt. biochar or control soil) and 45 cm of un‐amended subsoil. Precipitation, evaporative demands and soil moisture were recorded across the growth seasons, with 2018 having severe drought conditions. This year evapotranspiration levels increased with increasing ash and biochar content (by 54% and 33% for the 6% ash‐ and 1% biochar‐amended soils, respectively), and plant dry matter increased by 18% in both the 1% biochar‐ and 6% ash‐treated soils compared to the untreated control. A linear relationship was established between in situ field capacity and ash dosage (R2 = .96), showing an increase of 2.2% per percentage (wt.) of ash added, while the 1% biochar treatment increased the capacity by 3.5%, indicating a higher efficiency than for ash. However, we did not find significant positive effects on grain yields. The results show that ash and biochar have the potential to significantly increase soil water retention, evapotranspiration and total dry matter yield in drought conditions, but that this may not correspond to an increase in grain yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.