We characterized the effect of 1) temperature × time, 2) freeze-thaw cycles, and 3) high porcine reproductive and respiratory syndrome virus (PRRSV) RNA concentrations on the detection of PRRSV and a porcine-specific internal sample control (ISC) in serum, oral fluid, and fecal samples using a commercial PRRSV RT-rtPCR assay (Idexx). In study 1, the effect of temperature × time on PRRSV and ISC detection was shown to be specimen dependent. In serum stored at 4, 10, or 20°C, PRRSV detection was consistent for up to 168 h, but storage at 30°C reduced detectable PRRSV RNA. ISC RNA was stable in serum held at 4 and 10°C, but not at 20 and 30°C. In contrast, PRRSV and ISC RNAs in oral fluid and fecal samples continuously decreased at all temperature × time treatments. Based on these data, serum samples should be stored at ≤ 20°C to optimize PRRSV RNA detection. Oral fluid and fecal samples should be frozen in a non–self-defrosting freezer until tested. In study 2, freeze-thaw cycles had little impact on PRRSV and ISC detection, but more so in oral fluids than serum or fecal samples. Thus, freeze-thaw cycles in oral fluids should be minimized before RT-rtPCR testing. In study 3, the ISC was not affected by high concentrations of PRRSV RNA in serum, oral fluid, or fecal samples. It should not be assumed that data from our PRRSV study are applicable to other pathogens; additional pathogen-specific studies are required.
In the recent past, disease control on swine farms was based on vaccination or intentional exposure to pathogens to stimulate immunity and protect against clinical disease. This one-dimensional strategy became increasingly inadequate as farms increased in size and as pathogens resistant to immune control became commonplace, e.g. porcine reproductive and respiratory syndrome virus (PRRSV) and others. Today, prevention and control requires the coordinated use of (1) immunity to reduce clinical losses, (2) biosecurity to stop the entry of pathogens, and (3) surveillance to verify that immunity and biosecurity strategies are functioning properly. Of the three, surveillance has been the most difficult to implement, both because populations on swine farms are complex and because practical surveillance methods have only become available in recent years. Herein we outline the elements of designing and implementing infectious disease surveillance in commercial swine herds using diagnostic testing of antemortem samples.
Based on publications reporting improvements in real-time PCR (rtPCR) performance, we compared protocols based on heat treatment or dilution followed by direct rtPCR to standard extraction and amplification methods for the detection of porcine reproductive and respiratory syndrome virus (PRRSV), influenza A virus (IAV), porcine epidemic diarrhea virus (PEDV), or Mycoplasma hyopneumoniae (MHP) in swine oral fluids (OFs). In part A, we subjected aliquots of positive OF samples to 1 of 4 protocols: protocol 1: heat (95°C × 30 min) followed by direct rtPCR; protocol 2: heat and cool (25°C × 20 min) followed by direct rtPCR; protocol 3: heat, cool, extraction, and rtPCR; protocol 4 (control): extraction and then rtPCR. In part B, positive OF samples were split into 3, diluted (D1 = 1:2 with Tris–borate–EDTA (TBE); D2 = 1:2 with negative OF; D3 = not diluted), and then tested by rtPCR using the best-performing protocol from part A (protocol 4). In part A, with occasional exceptions, heat treatment resulted in marked reduction in the detection of target and internal sample control (ISC) nucleic acids. In part B, sample dilution with TBE or OF produced no improvement in the detection of targets and ISCs. Thus, standard extraction and amplification methods provided superior detection of PRRSV, IAV, PEDV, and MHP nucleic acids in OFs.
Endogenous reference genes are used in gene-expression studies to “normalize” the results and, increasingly, as internal sample controls (ISC) in diagnostic quantitative polymerase chain reaction (qPCR). Three studies were conducted to evaluate the performance of a porcine-specific ISC in a commercial porcine reproductive and respiratory syndrome virus (PRRSV) reverse transcription-qPCR. Study 1 evaluated the species specificity of the ISC by testing serum from seven non-porcine domestic species (n = 34). In Study 2, the constancy of ISC detection over time (≥42 days) was assessed in oral fluid (n = 130), serum (n = 215), and feces (n = 132) collected from individual pigs of known PRRSV status. In Study 3, serum (n = 150), oral fluid (n = 150), and fecal samples (n = 75 feces, 75 fecal swabs) from commercial herds were used to establish ISC reference limits. Study 1 showed that the ISC was porcine-specific, i.e., all samples from non-porcine species were ISC negative (n = 34). In Study 2, the ISC was detected in all oral fluid, serum, and fecal samples, but differed in concentration between specimens (p < 0.05; mixed-effects regression model). The results of Study 3 were used to establish ISC reference limits for the 5th, 2.5th and 1.25th percentiles. Overall, the ISC response was consistent to the point that failure in detection is sufficient justification for re-testing and/or re-sampling.
The diagnostic performance of a commercial Mycoplasma hyopneumoniae (MHP) serum enzyme-linked immunosorbent assay (ELISA) was evaluated for MHP antibody detection in processing fluids (n = 494) using samples from three commercial swine farms. Based on historical monitoring, one farm was considered MHP positive and two were considered MHP negative. Samples were tested at a 1:10 dilution and diagnostic sensitivities and specificities estimated for specific ELISA sample-to-positive (S:P) cutoffs. At S:P ≥ 0.40, diagnostic sensitivity and specificity were estimated as 97.6% and 100.0%, respectively. Overall, the results suggest that processing fluids can be used for MHP antibody surveillance in breeding herds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.