This work demonstrates a simple methodology to tune the chiroptical properties of chiral europium(iii) complexes by supramolecular polymerization. Helical aggregation of the cesium derivative has updated the highest luminescence dissymmetry factor to date leading to naked eye visualization of circular polarized luminescence using circularly polarized filters.
We synthesized a novel water-soluble porphyrin THPP and its metalated derivative Zn-THPP having excellent triplet excited state quantum yields and singlet oxygen generation efficiency. When compared to U.S. Food and Drug Administration approved and clinically used sensitizer Photofrin, THPP showed ca. 2-3-fold higher in vitro photodynamic activity in different cell lines under identical conditions. The mechanism of the biological activity of these porphyrin systems has been evaluated through a variety of techniques: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, comet assay, poly(ADP-ribose)polymerase (PARP) cleavage, CM-H(2)DCFDA assay, DNA fragmentation, flow cytometric analysis, fluorescence, and confocal microscopy, which confirm the apoptotic cell death through predominantly reactive oxygen species (ROS). Moreover, THPP showed rapid cellular uptake and are localized in the nucleus of the cells as compared to Hoechst dye and Photofrin, thereby demonstrating its use as an efficient sensitizer in photodynamic therapy and live cell NIR nucleus imaging applications.
We synthesized a new class of picolylamine-porphyrin conjugates 1-3 and have investigated the effect of heavy atom insertion on their intersystem crossing efficiency through spin-orbit perturbations. By incorporating zinc ions in the core as well as periphery positions of the porphyrin ring, we have successfully optimized their triplet excited state quantum yields and their efficiency to generate singlet oxygen. Uniquely, the picolylamine-porphyrin conjugate 3 having five zinc ions exhibited a triplet excited state quantum yield of ca. 0.97 and a sensitized singlet oxygen generation yield of ca. 0.92. In contrast, the free base porphyrin derivative 1 exhibited ca. 0.64 and 0.5 of the triplet excited state and singlet oxygen quantum yields, respectively. Our results demonstrate that the insertion of zinc metal ions in the picolylamine-porphyrin conjugates not only quantitatively enhances the triplet excited state and singlet oxygen yields but also imparts hydrophilicity, thereby their potential use as sensitizers in photodynamic therapy and green photooxygenation reactions.
With the objective of developing efficient sensitizers for therapeutic applications, we synthesized a water-soluble 5,10,15,20-tetrakis(3,4-dihydroxyphenyl)chlorin (TDC) and investigated its in vitro and in vivo biological efficacy, comparing it with the commercially available sensitizers. TDC showed high water solubility (6-fold) when compared with that of Foscan and exhibited excellent triplet-excited-state (84%) and singlet-oxygen (80%) yields. In vitro photobiological investigations in human-ovarian-cancer cell lines SKOV-3 showed high photocytotoxicity, negligible dark toxicity, rapid cellular uptake, and specific localization of TDC in neoplastic cells as assessed by flow-cytometric cell-cycle and propidium iodide staining analysis. The photodynamic effects of TDC include confirmed reactive-oxygen-species-induced mitochondrial damage leading to necrosis in SKOV-3 cell lines. The in vivo photodynamic activity in nude-mouse models demonstrated abrogation of tumor growth without any detectable pathology in the skin, liver, spleen, or kidney, thereby demonstrating TDC application as an efficient and safe photosensitizer.
The major challenge
in photodynamic therapy (PDT) is to discover
versatile photosensitizers (PSs) that possess good solubility in biological
media, enhanced singlet oxygen generation efficacy, and photodynamic
activity. Working in this direction, we synthesized a picolylamine-functionalized
porphyrin conjugate, compound
1
, and its zinc complex
compound
2
. Compound
1
forms spherical structures
in methanol, whereas compound
2
exhibited vesicular structures.
Compared to the existing PSs like foscan and photofrin, compound
2
exhibited a high singlet oxygen generation efficiency and
triplet quantum yield. The complex also showed good water solubility,
and its PDT activity was demonstrated through in vitro studies using
MDA-MB 231 breast cancer cells. The mechanism of biological activity
evaluated using various techniques proved that the active compound
2
induced predominantly singlet oxygen-triggered apoptosis-mediated
cancerous cell death. Our results demonstrate that zinc insertion
in the picolyl porphyrin induces an enhanced triplet excited state,
and the singlet oxygen yields quantitatively and imparts excellent
in vitro photodynamic activity, thereby demonstrating their pertinence
as a nanodrug in future photobiological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.