Propolis is a substance with significant anti-inflammatory, anticancer, and antiviral activity, which could be used more efficiently at the nano level as an additive in the food industry. The aim was to obtain and characterize nanoencapsulated multi-floral propolis from the agro-ecological region of Apurimac, Peru. For nanoencapsulation, 5% ethanolic extracts propolis with 0.3% gum arabic and 30% maltodextrin were prepared. Then, the mixtures were dried by nano spraying at 120 °C using the smallest nebulizer. The flavonoid content was between 1.81 and 6.66 mg quercetin/g, the phenolic compounds were between 1.76 and 6.13 mg GAE/g, and a high antioxidant capacity was observed. The results of moisture, water activity, bulk density, color, hygroscopicity, solubility, yield, and encapsulation efficiency were typical of the nano spray drying process. The total organic carbon content was around 24%, heterogeneous spherical particles were observed at nanometer level (between 11.1 and 562.6 nm), with different behaviors in colloidal solution, the thermal gravimetric properties were similar in all the encapsulates, the FTIR and EDS analysis confirmed the encapsulation and the X-ray diffraction showed amorphous characteristics in the obtained material; stability and phenolic compound release studies indicated high values of 8.25–12.50 mg GAE/g between 8 and 12 h, the principal component analysis confirmed that the flora, altitude, and climate of the propolis location influenced the content of bioactive compounds, antioxidant capacity, and other properties studied. The nanoencapsulate from the district of Huancaray was the one with the best results, allowing its future use as a natural ingredient in functional foods. Nevertheless, technological, sensory, and economic studies should still be carried out.
Ethanolic extracts of propolis and bee honey contain substances beneficial to human health. Mixtures of wall materials were compared in spray-drying microencapsulation of ethanolic extracts of propolis and bee honey rich in bioactive compounds. Maltodextrin and tara gum were used to obtain microencapsulates A, and modified native potato starch and tara gum were used for microencapsulates B. High values of phenolic compounds, flavonoids, and antioxidant capacity were obtained in microcapsules A and B, and the results obtained in terms of encapsulation efficiency, yield, hygroscopicity, solubility, moisture, Aw, bulk density, and color were typical of the spray-drying process. On the other hand, spherical and elliptical microparticles of sizes between 7.83 and 53.7 µm with light and medium stability were observed. Thermogravimetric properties were similar in both microencapsulates; total organic carbon, SEM-EDS, and FTIR analyses corroborated the encapsulation. X-ray diffractogram exhibited amorphous structures, and the release kinetics of phenolic compounds presented high values from 8.13 to 12.58 mg GAE/g between 7 and 13 h. Finally, modified potato starch is a better encapsulant than maltodextrin because it has better core protection and controlled release of the encapsulated bioactive compounds.
The search for new natural sources of hydrocolloids with stabilizing, thickening, and good binding capacity, from raw materials that are environmentally friendly and that contribute to the circular economy is a challenge for the food industry. The aim of the study was the preliminary characterization of a spray-dried hydrocolloid from high Andean algae Nostoc sphaericum. Four ecotypes of algae from Peruvian high Andean lagoons located above 4000 m were considered. The samples were collected in the period March—April 2021 and were subjected to a spray drying process in an aqueous medium. The characterization showed that the dehydrated nostoc ecotypes presented high protein and carbohydrate content, making it a potential material for direct use as a functional food for humans. The spray-dried product presented good stability for its use as a hydrocolloid, with zeta potential values (ζ), around 30 mV, evidencing the presence of -CO-, -OH, -COO-, and -CH groups, characteristic of polysaccharides, representing 40% of total organic carbon on average, giving it low water activity values and particle size at the nanometric level. Major minerals such as Ca (>277 mg/100 g), Mg (>19.7 mg/100 g), and Fe (>7.7 mg/100 g) were reported. Spray-dried nostoc is a hydrocolloid material with high potential for the food industry, with good nutritional content and techno-functional behavior.
Ferropenic anemy is the leading iron deficiency disease in the world. The aim was to encapsulate erythrocytes extracted from the blood of Cavia porcellus, in matrices of tara gum and native potato starch. For microencapsulation, solutions were prepared with 20% erythrocytes; and encapsulants at 5, 10, and 20%. The mixtures were spray-dried at 120 and 140 °C. The iron content in the erythrocytes was 3.30 mg/g and between 2.32 and 2.05 mg/g for the encapsulates (p < 0.05). The yield of the treatments varied between 47.84 and 58.73%. The moisture, water activity, and bulk density were influenced by the temperature and proportion of encapsulants. The total organic carbon in the atomized samples was around 14%. The particles had diverse reddish tonalities, which were heterogeneous in their form and size; openings on their surface were also observed by SEM. The particle size was at the nanometer level, and the zeta potential (ζ) indicated a tendency to agglomerate and precipitation the solutions. The presence of iron was observed on the surface of the atomized by SEM-EDX, and FTIR confirmed the encapsulation due to the presence of the chemical groups OH, C-O, C-H, and N-H in the atomized. On the other hand, high percentages of iron release in vitro were obtained between 88.45 and 94.71%. The treatment with the lowest proportion of encapsulants performed at 140 °C obtained the best results and could potentially be used to fortify different functional foods.
Quinoa (Chenopodium quinoa Willd) is a pseudocereal with a high nutritional potential and a significant content of bioactive compounds, which is consumed mainly by the inhabitants of the South American Andes. The aim of this study was to evaluate the protein content, total phenols, and antioxidant activity of quinoa grains of the Salcedo INIA, Pasankalla, and Negra collana varieties, germinated for 24 and 48 hours at 35 °C. Organic quinoa grains were grown in the Andahuaylas province in Peru, at an altitude of 3582 m. The protein content was determined through the Kjeldahl method, total phenols, in turn, by spectrophotometry with the Folin-Ciocalteu reagent, and the antioxidant activity of the DPPH type were registered. The data were analyzed through an Analysis of Variance (ANOVA), a Tukey test, and Pearson’s correlation at 5% significance. The germinated quinoa grains showed a considerable increase (p < 0,05) in their protein content, total phenolic compounds, and antioxidant activity, as well as a strong positive correlation with the size of sprouts during the germination time. Therefore, germinated quinoa could be considered as a promising product for human nutrition and health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.