In gram-positive bacteria, many important processes are controlled by cell-to-cell communication, which is mediated by extracellular signal molecules produced by the bacteria. Most of these signaling molecules are peptides or modified peptides. Signal processing, in most cases, involves either transduction across the cytoplasmic membrane or import of the signal and subsequent interaction with intracellular effectors. Concentrations of signal in the nanomolar range or below are frequently sufficient for biological activity. The microbial processes controlled by extracellular signaling include the expression of virulence factors, the expression of gene transfer functions, and the production of antibiotics.
SummaryDuring sequencing of an 11.5 kb genomic region of a serotype M49 group A streptococcal (GAS) strain, a series of genes were identified including nra (negative regulator of GAS). Transcriptional analysis of the region revealed that nra was primarily monocistronically transcribed. Polycistronic expression was found for the three open reading frames (ORFs) downstream and for the four ORFs upstream of nra. The deduced Nra protein sequence exhibited 62% homology to the GAS RofA positive regulator. In contrast to RofA, Nra was found to be a negative regulator of its own expression and that of the two adjacent operons by analysis of insertional inactivation mutants. By polymerase chain reaction and hybridization assays of 10 different GAS serotypes, the genomic presence of nra, rofA or both was demonstrated. Nra-regulated genes include the fibronectin-binding protein F2 gene (prtF2) and a novel collagen-binding protein (cpa). The Cpa polypeptide was purified as a recombinant maltose-binding protein fusion and shown to bind type I collagen but not fibronectin. In accordance with nra acting as a negative regulator of prtF2 and cpa, levels of attachment of the nra mutant strain to immobilized collagen and fibronectin was increased above wild-type levels. In addition, nra was also found to regulate negatively (four-to 16-fold) the global positive regulator gene, mga. Using a strain carrying a chromosomally integrated duplication of the nra 3Ј end and an nra -luciferase reporter gene transcriptional fusion, nra expression was observed to reach its maximum during late logarithmic growth phase, while no significant influence of atmospheric conditions could be distinguished clearly.
Conjugative transfer of the plasmid pCF10 by Enterococcus faecalis donor cells occurs in response to a peptide sex pheromone, cCF1O, secreted by recipients. The plasmid-encoded cCF10 binding protein, PrgZ, is similar in sequence to binding proteins (OppAs) encoded by oligopeptide permease (opp) operons. Mutation of prgZ decreased the sensitivity of donor cells to pheromone, whereas inactivation of the chromosomal E. faecalis opp operon abolished response at physiological concentrations of pheromone. Affinity chromatography experiments demonstrated the interaction of the pheromone with several putative intracellular regulatory molecules, including an RNA molecule required for positive regulation of conjugation functions. These data suggest that processing of the pheromone signal involves recruitment of a chromosomal Opp system by PrgZ and that signaling occurs by direct interaction of internalized pheromone with intracellular effectors.
Bacterial oligopeptide permeases are membrane-associated complexes of five proteins belonging to the ABC-transporter family, which have been found to be involved in obtaining nutrients, cell-wall metabolism, competence, and adherence to host cells. A lambda library of the strain CS101 group A streptococcal (GAS) genome was used to sequence 10,192 bp containing the five genes oppA to oppF of the GAS opp operon. The deduced amino acid sequences exhibited 50-84% homology to pneumococcal AmiA to AmiF sequences. The operon organization of the five genes was confirmed by transcriptional analysis and an additional shorter oppA transcript was detected. Insertional inactivation was used to create serotype M49 strains which did not express either the oppA gene or the ATPase genes, oppD and oppF. The mutation in oppA confirmed that the additional shorter oppA transcript originated from the opp operon and was probably due to an intra-operon transcription terminator site located downstream of oppA. While growth kinetics, binding of serum proteins, and attachment to eukaryotic cells were unaffected, the oppD/F mutants showed reduced production of the cysteine protease, SpeB, and a change in the pattern of secreted proteins. Thus, the GAS opp operon appears to contribute to both protease production and export/processing of secreted proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.