Abstract:Herpes simplex virus (HSV) infection is the most common cause of corneal blindness in the Western world. Despite effective anti-viral drugs such as acyclovir (ACV), disease recurrence due to the virus establishing latency within the corneal nerves and possibly cells makes treatment very challenging. Furthermore, although effective, current systemic and topical preparations of anti-viral drugs do not appear to deliver sufficient quantities to the cornea to prevent reactivation. Current treatment for HSV vision loss is transplantation with donor corneas, but the surgery itself can reactivate viruses. We examined the feasibility of preventing viral reactivation during surgery, by sustained delivery of ACV introduced during corneal transplantation surgery, through encapsulation of the drug within silica (SiO 2 ) nanoparticles (NP) incorporated into biosynthetic alternatives to donor corneas. We show that incorporation of NPs did not affect optical clarity of the collagen-based corneal substitutes nor their biocompatibility. NP-encapsulation effectively sustained ACV release from the biosynthetic implants over 10 days, compared to free ACV incorporated directly into the hydrogel constructs. The NP-enabled sustained release resulted in effective prevention of virally-induced cell death, not observed with the free drug. This early model demonstrates the feasibility of using biomimetic corneal substitutes that incorporate a drug release system (e.g. silica nanoparticles encapsulating ACV) as future alternatives to human donor tissue grafts, for transplantation of HSV-infected corneas.
Virus manipulation of the ubiquitin-proteasome system has become increasingly apparent. Ubiquitin is a 76 amino acid protein that is post-translationally conjugated to target proteins, while poly-ubiquitination subsequently leads to degradation via the 26S proteasome. Target specificity is determined by a large family of ubiquitin ligases. Poxviruses encode p28, a highly conserved ubiquitin ligase expressed in a wide range of poxviruses (J. Virol. 79:597). Here we investigate the relationship between p28 and ubiquitination. Confocal microscopy indicated that orthologs of p28 co-localized with ubiquitin at the virus factory. Flow cytometry assays further demonstrated that p28 was regulated by proteasomal degradation. Moreover, when the ubiquitin ligase activity of p28 was disrupted by mutating the RING domain conjugated ubiquitin still localized to the viral factories, indicating that an unknown ubiquitin ligase(s) was responsible for regulating p28. Our observations indicate that p28 is a ubiquitin ligase that is regulated by ubiquitination and proteasomal degradation.
We have attached the antiviral drug acyclovir (ACV) to a xanthone photolabile protecting group (or photocage) through the O6 position of acyclovir, a procedure designed for the treatment of ocular herpes simplex virus infections. Acyclovir is photoreleased from the photocage, under physiological conditions, with a quantum yield (Φ(ACV release)) of 0.1-0.3 and an uncaging cross section (Φ·ε) of 450-1350 M cm(-1). We demonstrate that this photorelease method outcompetes alternative reaction pathways, such as protonation. Furthermore, complete release of the drug is theoretically possible given a sufficient dose of light . Surprisingly the acyclovir photocage, also showed some antiviral activity towards HSV-1.
Many cellular processes are regulated by the ubiquitin-proteasome system. Therefore, it is not surprising that viruses have adapted ways to manipulate the ubiquitin-proteasome system to their own advantage. p28 is a poxvirus encoded ubiquitin ligase that contains an N-terminal KilA-N DNA binding domain and a C-terminal RING domain required for ubiquitin ligase activity. p28 is encoded by a wide range of poxviruses, including members of the Avipoxviruses. Here we show that fowlpox virus (FWPV) and canarypox virus (CNPV) each contain two distinct p28-like ubiquitin ligases; an observation not seen in other members of the poxvirus family. FWPV150 and FWPV157 are both ubiquitinated during infection and co-localize with conjugated ubiquitin at the viral factory. Interestingly, we demonstrate that FWPV150 was actively transcribed early, while FWPV157 was expressed late. Overall, these observations suggest different temporal roles for FWPV150 and FWPV157, an observation unique to the Avipoxviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.