Immune responses need to be controlled tightly to prevent autoimmune diseases, yet underlying molecular mechanisms remain partially understood. Here, we identify biallelic mutations in three patients from two unrelated families in
differentially expressed in FDCP6 homolog (DEF6)
as the molecular cause of an inborn error of immunity with systemic autoimmunity. Patient T cells exhibit impaired regulation of CTLA-4 surface trafficking associated with reduced functional CTLA-4 availability, which is replicated in
DEF6
-knockout Jurkat cells. Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well as reduced RAB11
+
CTLA-4
+
vesicles in
DEF6
-mutated cells. One of the patients has been treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at T-cell surface, identifying a potential target for autoimmune and/or cancer therapy.
BackgroundThe role of the high affinity IgE receptor, FcεRI, in IgE-mediated immune responses of the gastrointestinal (GI) mucosa is poorly understood. Currently, a detailed characterization of FcεRI expression throughout the human gut is lacking. The aim of this study was to define the expression pattern of FcεRI in the GI tract.Methods/Principal FindingsWe compared FcεRI expression in children with gastritis/esophagitis (n = 10), celiac disease (n = 10), inflammatory bowel disease (IBD) (n = 9), and normal mucosa (n = 5). The α–subunit of FcεRI (FcεRIα), detected by immunohistochemistry, was found on cells infiltrating the mucosa of the esophagus, the stomach, and the duodenum, but was rarely detected in more distal sections of the GI tract. Accordingly, quantitative RT-PCR analysis on esophagus, stomach, duodenum, colon, and rectum biopsies revealed that FcεRIα and -β expression levels decreased towards the distal intestine. mRNA transcripts of the common Fc-receptor-γ chain were present in the entire GI mucosa. Double-immunofluorescence staining of esophageal specimens confirmed that FcεRIα was expressed on intraepithelial mast cells and Langerhans cells. The mRNA expression levels of the α, β, and γ subunits of FcεRI did not correlate with total serum IgE but were associated with mucosal inflammation.Conclusion/SignificanceOur data define the upper GI tract as the main site for IgE-mediated immune activation via FcεRI. Tissue mRNA levels of FcεRIα are regulated by inflammatory conditions rather than serum IgE, indicating that FcεRI might also play a role in pathologies other than allergy.
After treatment with IFX, children with IBD improved significantly in weight, with the majority achieving positive catch-up growth. Bone mass tended to remain static with time of treatment with IFX, despite a significant increase in 25-OHD. Improved nutritional status positively predicts improved bone mineralisation.
Next to improvement of PCDAI, half of the children achieved a positive catch-up growth. A better nutritional status with improvement in BMI and weight is positive predictor for improved growth and bone mineralisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.