Toxoplasmosis, caused by infection of the protozoan parasite Toxoplasma gondii, is associated with mild disease in healthy individuals, whereas individuals with depressed immunity may develop encephalitis, neurologic disorders, and other organ diseases. Women who develop acute toxoplasmosis during pregnancy are at risk of transmitting the infection to the fetus, which may lead to fetal damage. A diagnosis is usually confirmed by measuring IgG, or IgM where it is important to determine the onset of infection. A negative IgM result essentially excludes acute infection, whereas a positive IgM test is largely uninterpretable because IgM can persist for up to 18 months after infection. To identify antigens for improved diagnosis of acute infection, we probed protein microarrays displaying the polypeptide products of 1357 Toxoplasma exons with well-characterized sera from Turkey. The sera were classified according to conventional assays into (1) seronegative individuals with no history of T. gondii infection; (2) acute infections defined by clinical symptoms, high IgM titers, and low avidity IgG; (3) chronic/convalescent cases with high avidity IgG but persisting IgM; (iv) true chronic infections, defined by high avidity IgG and no IgM. We have identified 38 IgG target antigens and 108 IgM target antigens that can discriminate infected patients from healthy controls, one or more of which could form the basis of a 'tier-1 test to determine current or previous exposure. Of these, three IgG antigens and five IgM antigens have the potential to discriminate chronic/ IgM persisting or true chronics from recent acutely infected patients (a 'tier-2 test). Our analysis of the antigens revealed several enriched features relative to the whole proteome, which include transmembrane domains, signal peptides, or predicted localization at the outer membrane. This is the first protein microarray survey of the antibody response to T. gondii, and will
Toxoplasma gondii utilizes specialized secretory organelles called rhoptries to invade and hijack its host cell. Many rhoptry proteins are proteolytically processed at a highly conserved SΦXE site to remove organellar targeting sequences that may also affect protein activity. We have studied the trafficking and biogenesis of a secreted rhoptry metalloprotease with homology to insulysin that we named Toxolysin-1 (TLN1). Through genetic ablation and molecular dissection of TLN1 we have identified the smallest rhoptry targeting domain yet reported and expanded the consensus sequence of the rhopty pro-domain cleavage site. In addition to removal of its pro-domain, Toxolysin-1 undergoes a C-terminal cleavage event that occurs at a processing site not previously seen in Toxoplasma rhoptry proteins. While pro-domain cleavage occurs in the nascent rhoptries, processing of the C-terminal region precedes commitment to rhoptry targeting, suggesting that it is mediated by a different maturase, and we have identified residues critical for proteolysis. We have additionally shown that both pieces of TLN1 associate in a detergent resistant complex, formation of which is necessary for trafficking of the C-terminal portion to the rhoptries. Together, these studies reveal novel processing and trafficking events that are present in the protein constituents of this unusual secretory organelle.
Like most intracellular pathogens, Toxoplasma synthesizes and secretes an arsenal of proteins to successfully invade its host cell and hijack host functions for intracellular survival. The rhoptries are key secretory organelles that inject proteins into the host cell where they are positioned to coopt host processes, although little is known regarding how these proteins exert their functions. We show here that the rhoptry protein ROP13 is synthesized as a pre-pro-protein that is processed in the parasite. Processing occurs at a conserved SϕXE cleavage site as mutagenesis of glutamic acid to alanine at the P1 position disrupts ROP13 maturation. We also demonstrate that processing of the prodomain is not necessary for rhoptry targeting and secretion. While gene disruption reveals that ROP13 is not essential for growth in fibroblasts in vitro or for virulence in vivo, we find that ROP13 is a soluble effector protein that can access the cytoplasm of host cells. Exogenously expressed ROP13 in human cells remains cytosolic but also appears toxic, suggesting that overexpression of this effector protein is disrupting some function within the host cell.
The apicomplexan moving junction (MJ) is a highly conserved structure formed during host cell entry that anchors the invading parasite to the host cell and serves as a molecular sieve of host membrane proteins that protects the parasitophorous vacuole from host lysosomal destruction. While recent work in Toxoplasma and Plasmodium has reinforced the composition of the MJ as an important association of rhoptry neck proteins (RONs) with micronemal AMA1, little is known of the precise role of RONs in the junction or how they are targeted to the neck subcompartment. We report the first functional analysis of a MJ/RON protein by disrupting RON8 in T. gondii. Parasites lacking RON8 are severely impaired in both attachment and invasion, indicating that RON8 enables the parasite to establish a firm clasp on the host cell and commit to invasion. The remaining junction components frequently drag in trails behind invading knockout parasites and illustrate a malformed complex without RON8. Complementation of Δron8 parasites restores invasion and reveals a processing event at the RON8 C-terminus. Replacement of an N-terminal region of RON8 with a mCherry reporter separates regions within RON8 that are necessary for rhoptry targeting and complex formation from those required for function during invasion. Finally, the invasion defects in Δron8 parasites seen in vitro translate to radically impaired virulence in infected mice, promoting a model in which RON8 has a crucial and unprecedented task in committing Toxoplasma to host cell entry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.