There is evidence that viral oncolysis is synergistic with immune checkpoint inhibition in cancer therapy but the underlying mechanisms are unclear. Here, we investigated whether local viral infection of malignant tumors is capable of overcoming systemic resistance to PD-1-immunotherapy by modulating the spectrum of tumor-directed CD8 T-cells. To focus on neoantigen-specific CD8 T-cell responses, we performed transcriptomic sequencing of PD-1-resistant CMT64 lung adenocarcinoma cells followed by algorithm-based neoepitope prediction. Investigations on neoepitope-specific T-cell responses in tumor-bearing mice demonstrated that PD-1 immunotherapy was insufficient whereas viral oncolysis elicited cytotoxic T-cell responses to a conserved panel of neoepitopes. After combined treatment, we observed that PD-1-blockade did not affect the magnitude of oncolysis-mediated antitumoral immune responses but a broader spectrum of T-cell responses including additional neoepitopes was observed. Oncolysis of the primary tumor significantly abrogated systemic resistance to PD-1-immunotherapy leading to improved elimination of disseminated lung tumors. Our observations were confirmed in a transgenic murine model of liver cancer where viral oncolysis strongly induced PD-L1 expression in primary liver tumors and lung metastasis. Furthermore, we demonstrated that combined treatment completely inhibited dissemination in a CD8 T-cell-dependent manner. Therefore, our results strongly recommend further evaluation of virotherapy and concomitant PD-1 immunotherapy in clinical studies.
Gemcitabine administration after resection of pancreatic tumors in mice activates NK cell-mediated antitumor responses and inhibits local recurrence of tumors, consistent with observations from patients with PDAC. Transgenic mice with resectable pancreatic tumors might be promising tools to study adjuvant therapy strategies for patients.
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and disseminating cancer resistant to therapy, including checkpoint immunotherapies, and early tumor resection and (neo)adjuvant chemotherapy fails to improve a poor prognosis. In a transgenic mouse model of resectable PDAC, we investigated the coordinated activation of T and natural killier (NK) cells in addition to gemcitabine chemotherapy to prevent tumor recurrence. Only neoadjuvant, but not adjuvant treatment with a PD-1 antagonist effectively supported chemotherapy and suppressed local tumor recurrence and improved survival involving both NK and T cells. Local T-cell activation was confirmed by increased tumor infiltration with CD103CD8 T cells and neoantigen-specific CD8 T lymphocytes against the marker neoepitope LAMA4-G1254V. To achieve effective prevention of distant metastases in a complementary approach, we blocked the NK-cell checkpoint CD96, an inhibitory NK-cell receptor that binds CD155, which was abundantly expressed in primary PDAC and metastases of human patients. In gemcitabine-treated mice, neoadjuvant PD-1 blockade followed by adjuvant inhibition of CD96 significantly prevented relapse of PDAC, allowing for long-term survival. In summary, our results show in an aggressively growing transgenic mouse model of PDAC that the coordinated activation of both innate and adaptive immunity can effectively reduce the risk of tumor recurrence after surgery, facilitating long-term remission of this lethal disease. Coordinated neoadjuvant and adjuvant immunotherapies reduce the risk of disease relapse after resection of murine PDAC, suggesting this concept for future clinical trials. .
CD4 and CD8 T cells play a pivotal role in controlling tumor growth. However, the interplay of both cell types and their role in tumor suppression still remain elusive. In this study, we investigated the regulation of CD4 and CD8 T cell responses to different classes of tumor-specific antigens in liver cancer mouse models. Tumors were induced in p19Arf-deficient mice by hydrodynamic injection of transposon plasmids encoding NrasG12V and pre-defined tumor antigens. This allowed for assessing the regulation of tumor-specific CD4 and CD8 T cell responses. We showed that MHC class I tumor immunogenicity was essential to trigger tumor-directed CD4 T cells. Tumor-specific CD8 T cell responses arose independently of CD4 T cells, but they required Th1-polarized CD4 T cells for efficient tumor suppression. Our results further indicate that the immune system is incapable of eliciting sufficient numbers of T cells directed against antigens derived from immunoedited tumors, which consequently leads to a lack of T-cell-mediated tumor suppression in untreated hosts.
Hepatocellular carcinomas (HCC) are drug-resistant tumors that frequently possess high telomerase activity. It was therefore the aim of our study to investigate the potential of telomerase-dependent virotherapy in multimodal treatment of HCC. In contrast to normal liver, HCC xenografts showed high telomerase activity, resulting in tumor-restricted expression of E1A by a telomerase-dependent replicating adenovirus (hTERT-Ad). Neither tumor necrosis factor-related apoptosisinducing ligand (TRAIL) or chemotherapy alone nor the combined treatment with both agents resulted in significant destruction of HCC cells. Application of hTERT-Ad at low titers was also not capable to destroy HCC cells, but telomerase-dependent virotherapy overcame the resistance of HCC against TRAIL and chemotherapy. The synergistic effects are explained by a strong down-regulation of Mcl-1 expression through hTERT-Ad that sensitizes HCC for TRAILand chemotherapy-mediated apoptosis. To investigate whether down-regulation of Mcl-1 alone is sufficient to explain synergistic effects observed with virotherapy, Mcl-1 expression was inhibited by RNA interference. Treatment with Mcl-1-siRNA significantly enhanced caspase-3 activity after chemotherapy and TRAIL application, confirming that elimination of Mcl-1 is responsible for the drug sensitization by hTERT-Ad. Consistent with these results, heterologous overexpression of Mcl-1 significantly reduced the sensitization of hTERT-Ad transduced cells against apoptosisinducing agents. Chemotherapy did not interfere with quantitative hTERT-Ad production in HCC cells. Whereas hTERT-Ad virotherapy alone was only capable to inhibit the growth of Hep3B xenografts, virochemotherapy resulted in vast destruction of the drug-resistant HCC. In conclusion our data indicate that telomerase-dependent virotherapy is an attractive strategy to overcome the natural resistance of HCC against anticancer drugs by elimination of Mcl-1. (Cancer Res 2005; 65(16): 7393-402)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.