Corvidae, passerine songbirds such as jays, crows, and ravens known as corvids, have become model systems for the study of avian cognition. The superior cognitive capabilities of corvids mainly emerge from a disproportionally large telencephalon found in these species. However, a systematic mapping of the neuroanatomy of the corvid brain, and the telencephalon in particular, is lacking so far. Here, we present a brain atlas of the carrion crow, Corvus corone, with special emphasis on the telencephalic pallium. We applied four staining techniques to brain slices (Nissl, myelin, combination of Nissl and myelin, and tyrosine hydroxylase targeting catecholaminergic neurons). This allowed us to identify brain nuclei throughout the brain and delineate the known pallial subdivisions termed hyperpallium, entopallium, mesopallium, nidopallium, arcopallium, and hippocampal complex. The extent of these subdivisions and brain nuclei are described according to stereotaxic coordinates. In addition, 3D depictions of pallial regions were reconstructed from these slices. While the overall organization of the carrion crow's brain matches other songbird brains, the relative proportions and expansions of associative pallial areas differ considerably in agreement with enhanced cognitive skills found in corvids. The presented global organization of the crow brain in stereotaxic coordinates will help to guide future neurobiological studies in corvids.
The song system of songbirds (oscines) is one of the best studied neuroethological model systems. So far, it has been treated as a relatively constrained sensorimotor system. Songbirds such as crows, however, are also known for their capability to cognitively control their audio‐vocal system. Yet, the neuroanatomy of the corvid song system has never been explored systematically. We aim to close this scientific gap by presenting a stereotactic investigation of the extended song system of the carrion crow (Corvus corone), an oscine songbird of the corvid family that has become an interesting model system for cognitive neuroscience. In order to identify and delineate the song nuclei, the ascending auditory nuclei, and the descending vocal‐motor nuclei, four stains were applied. In addition to the classical Nissl‐, myelin‐, and a combination of Nissl‐and‐myelin staining, staining for tyrosine hydroxylase was used to reveal the distribution of catecholaminergic neurons (dopaminergic, noradrenergic, and adrenergic) in the song system. We show that the crow brain contains the important song‐related nuclei, including auditory input and motor output structures, and map them throughout the brain. Fiber‐stained sections reveal putative connection patterns between the crow's song nuclei comparable to other songbirds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.