Recent investigations have demonstrated p53 and Rb alterations in a subset of transitional cell carcinoma (TCC). Further genetic changes during tumor progression include overexpression of the c-myc gene in a significant number of mainly invasive bladder tumors. To study the possible interactions between these genes in TCC, urothelial cancer cell lines were chosen as an in vitro model. Expression and mutation of p53 was studied in 15 bladder cancer cell lines by immunocytochemistry, Western blot, polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) analysis and direct sequencing of double stranded PCR products of exons 4, 5, 7 and 8 of genomic DNA. C-myc expression and gene structure were studied using Northern and Southern blot techniques Rb protein expression was analyzed by Western blot. Twelve of 15 cell lines showed either p53 mutations or abnormal protein expression. Consistent with previous studies, five cell lines did not express Rb protein. None of the cell lines studied retained both tumor suppressor genes in a functional form. The c-myc gene appeared to be intact in all cell lines and copy numbers were close to normal. Northern analysis demonstrated that all cell lines expressed c-myc mRNA but evidence for altered regulation was found in at least two cell lines. Our data suggest that amplification or translocation are not the underlying mechanism for c-myc overexpression in urothelial tumors. No correlation between loss of Rb protein and c-myc expression was observed. The results presented here for the cell lines match well those obtained in vivo. Thus, these cell lines may provide a suitable model for further analysis of molecular alterations in urothelial cancer.
The c-myc gene product is known to be involved in the regulation of cell proliferation and differentiation. Altered c-myc gene expression is a common event in a variety of tumors. This study was designed to investigate c-myc overexpression in transitional cell carcinoma (TCC). The first part was designed to investigate the frequency of c-myc overexpression in relation to tumor stage and tumor grade. A second set of experiments was directed at the mechanisms underlying c-myc overexpression in TCC. A total of 185 paraffin-embedded urothelial tissue specimens were investigated immunohistochemically for c-myc overexpression. A single case of overexpression (6%) was observed in normal urothelial tissue (n = 16). c-myc overexpression was also infrequent in carcinoma in situ (TIS) (7/39 = 18%). In contrast, papillary urothelial tumors (n = 65) yielded c-myc overexpression in 38 cases (58%). Investigation of infiltrating bladder tumors revealed c-myc overexpression in 56% of T1 tumors and 59% of muscle-infiltrating tumors. The staining pattern in multifocal tumors was heterogeneous in 10 of 18 cases. Similarly, only 12 of 28 patients with tumor recurrences showed the same c-myc staining pattern in the primary tumor and in tumor recurrences. c-myc overexpression did not correlate with tumor grade or tumor progression. Nevertheless, the high frequency of c-myc overexpression in urothelial carcinoma suggests an important role for this protein in urothelial carcinoma. Therefore, the mechanism underlying c-myc overexpression was further investigated in six bladder carcinoma cell lines. Southern blot experiments under standardized conditions showed no significant gene amplification. The comparison of c-myc mRNA expression to that of histone H3 as a measure of cell proliferation revealed a moderate correlation (r = 0.45) in the six cell lines examined. These data suggest that in accord with its established role as a cell cycle competence factor, c-myc may be necessary but not sufficient for the induction of proliferation in urothelial carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.