Liposomes are vesicular structures consisting of an aqueous core surrounded by a lipid bilayer. Apart from the cytosol and lysosomes, no other intracellular compartment has been successfully targeted using liposomal delivery. Here, we report the development of liposomes capable of specific targeting to the endoplasmic reticulum (ER) and associated membranes. Using competition and inhibitor assays along with confocal microscopy, we have determined that ER liposomes utilize scavenger and low-density lipoprotein receptors for endocytosis and enter cells through a caveolin- and microtubule-dependent mechanism. They traffic intact to the ER, where fusion with the ER membrane occurs after 22-25 min, which was confirmed by fluorescence-dequenching assays. Once inside the ER, tagged lipids intercalate with the ER membrane and are subsequently incorporated into ER-assembling entities, such as the ER-budding viruses hepatitis C virus (HCV) and bovine viral diarrhea virus (BVDV), lipid droplets, and secreted lipoproteins. ER liposomes are superior to cytosolic liposome formulations for the intracellular delivery of aqueous cargo, such as HIV-1 antivirals, and are especially suited for the prolonged delivery of lipids and lipophilic drugs into human cells.
BackgroundLiver biopsy is the reference standard for assessing liver fibrosis and no reliable non-invasive diagnostic approach is available to discriminate between the intermediate stages of fibrosis. Therefore suitable serological biomarkers of liver fibrosis are urgently needed. We used proteomics to identify novel fibrosis biomarkers in hepatitis C patients with different degrees of liver fibrosis.Methodology/Principal FindingsProteins in plasma samples from healthy control individuals and patients with hepatitis C virus (HCV) induced cirrhosis were analysed using a proteomics technique: two dimensional gel electrophoresis (2-DE). This technique separated the proteins in plasma samples of control and cirrhotic patients and by visualizing the separated proteins we were able to identify proteins which were increasing or decreasing in hepatic cirrhosis. Identified markers were validated across all Ishak fibrosis stages and compared to the markers used in FibroTest, Enhanced Liver Fibrosis (ELF) test, Hepascore and FIBROSpect by Western blotting. Forty four candidate biomarkers for hepatic fibrosis were identified of which 20 were novel biomarkers of liver fibrosis. Western blot validation of all candidate markers using plasma samples from patients across all Ishak fibrosis scores showed that the markers which changed with increasing fibrosis most consistently included lipid transfer inhibitor protein, complement C3d, corticosteroid-binding globulin, apolipoprotein J and apolipoprotein L1. These five novel fibrosis markers which are secreted in blood showed a promising consistent change with increasing fibrosis stage when compared to the markers used for the FibroTest, ELF test, Hepascore and FIBROSpect. These markers will be further validated using a large clinical cohort.Conclusions/SignificanceThis study identifies 20 novel fibrosis biomarker candidates. The proteins identified may help to assess hepatic fibrosis and eliminate the need for invasive liver biopsies.
Abrin, the toxic lectin from the rosary pea plant Abrus precatorius, has gained considerable interest in the recent past due to its potential malevolent use. However, reliable and easy-to-use assays for the detection and discrimination of abrin from related plant proteins such as Abrus precatorius agglutinin or the homologous toxin ricin from Ricinus communis are sparse. To address this gap, a panel of highly specific monoclonal antibodies was generated against abrin and the related Abrus precatorius agglutinin. These antibodies were used to establish two sandwich ELISAs to preferentially detect abrin or A. precatorius agglutinin (limit of detection 22 pg/mL for abrin; 35 pg/mL for A. precatorius agglutinin). Furthermore, an abrin-specific lateral flow assay was developed for rapid on-site detection (limit of detection ~1 ng/mL abrin). Assays were validated for complex food, environmental and clinical matrices illustrating broad applicability in different threat scenarios. Additionally, the antibodies turned out to be suitable for immuno-enrichment strategies in combination with mass spectrometry-based approaches for unambiguous identification. Finally, we were able to demonstrate for the first time how the developed assays can be applied to detect, identify and quantify abrin from a clinical sample derived from an attempted suicide case involving A. precatorius.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.