To measure myoglobin, a marker for myocardial infarction, directly in human serum, two-dimensional liquid chromatography in combination with electrospray ionization mass spectrometry was applied as an analytical method. High-abundant serum proteins were depleted by strong anion-exchange chromatography. The myoglobin fraction was digested and injected onto a 60 mm x 0.2 mm i.d. monolithic capillary column for quantitation of selected peptides upon mass spectrometric detection. The addition of known amounts of myoglobin to the serum sample was utilized for calibration, and horse myoglobin was added as an internal standard to improve reproducibility. Calibration graphs were linear and facilitated the reproducible and accurate determination of the myoglobin amount present in serum. Manual data evaluation using integrated peak areas and an automated multistage algorithm fitting two-dimensional models of peptide elution profiles and isotope patterns to the mass spectrometric raw data were compared. When the automated method was applied, a myoglobin concentration of 460 pg/microL serum was determined with a maximum relative deviation from the theoretical value of 10.1% and a maximum relative standard deviation of 13.4%.
We present the first global computer-aided sequencing algorithm for the de novo determination of short nucleic acid sequences. The method compares the fragment ion spectra generated by collision-induced dissociation of multiply charged oligodeoxynucleotide-ions to the m/z values predicted employing established fragmentation pathways from a known reference sequence. The closeness of matching between the measured spectrum and the predicted set of fragment ions is characterized by the fitness, which takes into account the difference between measured and predicted m/z values, the intensity of the fragment ions, the number of fragments assigned, and the number of nucleotide positions not covered by fragment ions in the experimental spectrum. Smaller values for the fitness indicate a closer match between the measured spectrum and predicted m/z values. In order to find the sequence most closely matching the experimental spectrum, starting from a given nucleotide composition all possible oligonucleotide sequences are assembled followed by identification of the correct sequence by the lowest fitness value. Using this concept, sequences of 5-to 12-mer oligodeoxynucleotides were successfully de novo determined. High sequence coverage with fragment ions was essential for obtaining unequivocal sequencing results. Moreover, the collision energy was shown to have an impact on the interpretability of tandem mass spectra by the de novo sequencing algorithm. Experiments revealed that the optimal collision energy should be set to a value just sufficient for complete fragmentation of the precursor ion. T he hyphenation of liquid chromatography (LC) to mass spectrometry (MS) is one of the most powerful methods for the characterization of oligonucleotides today [1]. In this context the combination of ion-pair reversed-phase high-performance liquid chromatography and electrospray ionization mass spectrometry (ICEMS) has emerged as a versatile tool for the analysis of single-and double-stranded nucleic acids ranging in size from a few nucleotides (nt) up to several hundred base pairs (bp) [2][3][4]. Although the occurrence of a sequence variation is predictable on the basis of molecular mass measurements [5][6][7], detailed sequencing information can only be obtained from selective decomposition of oligonucleotides by tandem mass spectrometry (MSMS).The principles of gas-phase collision-induced dissociation (CID) reactions of oligonucleotides have been studied extensively [8 -17] and the resulting product ion spectra are predictable on the basis of known fragmentation pathways. Consequently, MSMS of oligodeoxynucleotides has been successfully applied to characterize or confirm structures [11], to detect chemical modifications [2,10,18], and to identify sequence variations [14, 19 -21]. However, the deduction of sequence information is time-consuming, highly technical, lacking strict objectivity due to reliance on human interpretation, and can be performed only in laboratories with extensive experience in MSMS. Hence, automation of pro...
An algorithm for the comparative sequencing (COMPAS) of oligonucleotides is shown to be suitable for the sequence verification of nucleic acids ranging in length from a few to 80 nucleotides. The algorithm is based on the matching of a fragment ion spectrum generated by collision-induced dissociation to m/z values predicted from a known reference sequence employing established fragmentation pathways. Prior to mass spectrometric investigation, the oligonucleotides were on-line purified by ion-pair reversed-phase high-performance liquid chromatography using monolithic separation columns. This study evaluated the potential and the limits of COMPAS regarding the length and the charge state of oligonucleotides, the selected collision energy, and the analyzed amount of sample using a quadrupole ion trap mass spectrometer. The results revealed that oligonucleotides could be very reliably resequenced up to 60-mers, although the algorithm was successfully used to even verify sequences up to 80-mers. The relative collision energy was typically in the range between 13 and 20%, which allowed in most cases a verification of the reference sequence in a window of at least three consecutive collision energies. To select a proper charge state for fragmentation, a compromise had to be found between high signal intensity and low charge state. Furthermore, by reducing the eluent flow rate during elution of the oligonucleotide, the sequence of a 50-mer was successfully verified from the analysis of 295 fmol of the raw product. COMPAS was proven to be reproducible and was applied to the genotyping of the polymorphic, Y-chromosomal locus M9 contained in a 62-base pair polymerase chain reaction product. (J Am Soc Mass Spectrom 2004, 15, 510 -522)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.