The paper presents a characterisation about argumentation and proof in mathematics. On the basis of contemporary linguistic theories, the hypothesis that proof is a special case of argumentation is put forward and Toulmin's model is proposed as a methodological tool to compare them. This model can be used to detect and analyse the structure of an argumentation supporting a conjecture (abduction, induction, etc.) and the structure of its proof. The aim of the paper is to highlight the importance of structural analysis between argumentation and proof. This analysis shows that although there are clear cases of continuity between argumentation supporting a conjecture and its proof, there is often a structural distance between the two (from an abductive argumentation to a deductive proof, from an inductive argumentation to a mathematical inductive proof).
This paper concerns a study analysing cognitive continuities and distances between argumentation supporting a conjecture and its algebraic proof, when solving open problems involving properties of numbers. The aim of this paper is to show that, unlike the geometrical case, the structural distance between argumentation and proof (from an abductive argumentation to a deductive proof) is not one of the possible difficulties met by students in solving such problems. On the contrary, since algebraic proof is characterized by a strong deductive structure, abductive steps in the argumentation activity can be useful in linking the meaning of the letters used in the algebraic proof with numbers used in the argumentation. The analysis of continuities and distances between argumentation and proof is based on the use of Toulmin's model combined with ck¢ model.
This paper offers a typology of forms and uses of abduction that can be exploited to better analyze abduction in proving processes. Based on the work of Peirce and Eco, we describe different kinds of abductions that occur in students' mathematical activity and extend Toulmin's model of an argument as a methodological tool to describe students' reasoning and to classify the different kinds of abduction. We then use this tool to analyze case studies of students' abductions and to identify cognitive difficulties students encounter. We conclude that some types of abduction may present obstacles, both in the argumentation when the abduction occurs and later when the proof is constructed.
In this paper, we analyze the role of examples in the proving process. The context chosen for this study was finding a general rule for triangular numbers. The aim of this paper is to show that examples are effective for the construction of a proof when they allow cognitive unity and structural continuity between argumentation and proof. Continuity in the structure is possible if the inductive argumentation is based on process pattern generalization (PPG), but this is not the case if a generalization is made on the results. Moreover, the PPG favors the development of generic examples that support cognitive unity and structural continuity between the argumentation and proof. The cognitive analysis presented in this paper is performed through Toulmin's model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.