In this paper we consider random block matrices, which generalize the general beta ensembles, which were recently investigated by Edelmann (2002, 2005). We demonstrate that the eigenvalues of these random matrices can be uniformly approximated by roots of matrix orthogonal polynomials which were investigated independently from the random matrix literature. As a consequence we derive the asymptotic spectral distribution of these matrices. The limit distribution has a density, which can be represented as the trace of an integral of densities of matrix measures corresponding to the Chebyshev matrix polynomials of the first kind. Our results establish a new relation between the theory of random block matrices and the field of matrix orthogonal polynomials, which have not been explored so far in the literature.
We explore the relation between matrix measures and quasi-birth-and-death processes. We derive an integral representation of the transition function in terms of a matrix-valued spectral measure and corresponding orthogonal matrix polynomials. We characterize several stochastic properties of quasi-birth-and-death processes by means of this matrixmeasure and illustrate the theoretical results by several examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.