Anti-myelin immunity is commonly thought to drive multiple sclerosis, yet the initial trigger of this autoreactivity remains elusive. One of the proposed factors for initiating this disease is the primary death of oligodendrocytes. To specifically test such oligodendrocyte death as a trigger for anti-CNS immunity, we inducibly killed oligodendrocytes in an in vivo mouse model. Strong microglia-macrophage activation followed oligodendrocyte death, and myelin components in draining lymph nodes made CNS antigens available to lymphocytes. However, even conditions favoring autoimmunity-bystander activation, removal of regulatory T cells, presence of myelin-reactive T cells and application of demyelinating antibodies-did not result in the development of CNS inflammation after oligodendrocyte death. In addition, this lack of reactivity was not mediated by enhanced myelin-specific tolerance. Thus, in contrast with previously reported impairments of oligodendrocyte physiology, diffuse oligodendrocyte death alone or in conjunction with immune activation does not trigger anti-CNS immunity.
Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP(+) astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage. Whereas loss of astrocyte function did lead to microglial activation, this had no impact on the neuronal loss and clinical decline. Neuronal injury was caused by oxidative stress resulting from the reduced redox scavenging capability of dysfunctional astrocytes and could be prevented by the in vivo treatment with scavengers of reactive oxygen and nitrogen species (ROS/RNS). Our results suggest that the subpopulation of GFAP(+) astrocytes maintain neuronal health by controlling redox homeostasis in the adult CNS.
The overall morphology and with it associated the formation of myelin is generally thought to be resolved. Based on electron microscopic findings more than half a century ago, the current model of myelination describes all myelin membranes to run in parallel with the longitudinal axis of the axon and to form a smooth surface, reminiscent of a rolled up carpet. However, different studies in the past demonstrated a distinct myelin morphology with an uneven myelin surface contour that challenges the established concept. Even though the current model of myelination has since been recognized as insufficient, CNS myelin formation has not yet been investigated in real-time with the requisite technique and resolution. We therefore traced myelin growth in murine organotypic cerebellar slice cultures using high-resolution confocal live imaging, light and electron microscopy and assessed myelin morphology in young and adult mice by confocal microscopy. Our data verify that the myelin surface is indeed not smooth but runs in a bidirectional, regularly spaced coil along the axon in both young and adult mice. Time-lapse imaging revealed that the growth of coiled myelin turns emerges during myelin formation. We therefore propose the "liquid croissant" model as a new concept of myelination that overcomes not only some of the incongruences of previous myelination theories, but potentially also explains the development of certain myelin pathologies observed in remyelination and axonopathies.
Permanent disability of patients suffering from central nervous system (CNS) inflammation such as multiple sclerosis, the most common chronic inflammatory disorder of the CNS, originates mainly from demyelination and axonal damage. Although many studies in the past focused on the role of CD4 ؉ T cells, several recent findings postulate the relevance of autoaggressive, cytotoxic CD8 ؉ T cells in the effector phase of multiple sclerosis. Yet, it remains unresolved whether axonal injury is the result of a CD8 ؉ T cell-targeted hit against the axon itself or the consequence of an attack against the myelin structure. To address this issue of CD8-mediated tissue damage in CNS inflammation , we performed continuous confocal imaging of autoaggressive , cytotoxic CD8 ؉ T cells in living organotypic cerebellar brain slices. We observed that loading brain slices with the cognate peptide antigen caused CD8-mediated damage of myelinated axons. To exclude the possibility that the cognate peptide loaded onto the brain slices was presented by axons directly , we restricted the cognate antigen expression exclusively to the cytosol of oligodendrocytes. Aside from vast myelin damage , extensive axonal bystander injury occurred. Using this model system of inflammatory CNS injury , we visualize that axonal loss can be the consequence from "collateral bystander damage" by autoaggressive , cytotoxic CD8 ؉ T cells , targeting their cognate antigen processed and presented by oligodendrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.