It has been shown previously that high rates of methicillin- and mupirocin-resistant Staphylococcus aureus exist in the Caribbean islands of Trinidad and Tobago, as well as a high prevalence of Panton-Valentine leukocidin-positive S. aureus. Beyond these studies, limited typing data have been published. In order to obtain insight into the population structure not only of MRSA but also of methicillin-susceptible S. aureus, 294 clinical isolates collected in 2012/2013 were typed by microarray hybridisation. A total of 15.31% of the tested isolates were MRSA and 50.00% were PVL-positive. The most common MSSA strains were PVL-positive CC8-MSSA (20.41% of all isolates tested), PVL-positive CC152-MSSA (9.52%) and PVL-positive CC30-MSSA (8.84%) while the most common MRSA were ST239-MRSA-III&SCCmer (9.18%) and ST8-MRSA-IV, “USA300” (5.78%). 2.38% of characterised isolates belonged to distinct strains likely to be related to “Staphylococcus argenteus” lineages. The population structure of S. aureus isolates suggests an importation of strains from Africa, endemicity of PVL-positive MSSA (mainly CC8) and of ST239-MRSA-III, and a recent emergence of the PVL-positive CC8-MRSA-IV strain “USA300”.
The alpha toxin of Staphylococcus aureus is a pore forming toxin that penetrates host cell membranes causing osmotic swelling, rupture, lysis and subsequently cell death. Haemolysin alpha is toxic to a wide range of different mammalian cells; i.e., neurotoxic, dermonecrotic, haemolytic, and it can cause lethality in a wide variety of animals. In this study, the in vitro alpha toxin production of 648 previously genotyped isolates of S. aureus was measured quantitatively using antibody microarrays. Isolates originated from medical and veterinary settings and were selected in order to represent diverse clonal complexes and defined clinical conditions. Generally, the production of alpha toxin in vitro is related to the clonal complex affiliation. For clonal complexes CC22, CC30, CC45, CC479, CC705 and others, invariably no alpha toxin production was noted under the given in vitro conditions, while others, such as CC1, CC5, CC8, CC15 or CC96 secreted variable or high levels of alpha toxin. There was no correlation between alpha toxin yield and clinical course of the disease, or between alpha toxin yield and host species.
Panton-Valentine leukocidin (PVL) is a virulence factor of Staphylococcus aureus, which is associated with skin and soft-tissue infections and necrotizing pneumonia. To develop a rapid phenotypic assay, recombinant PVL F component was used to generate monoclonal antibodies by phage display. These antibodies were spotted on protein microarrays and screened using different lukF-PV preparations and detection antibodies. This led to the identification of the optimal antibody combination that was then used to establish a lateral flow assay. This test was used to detect PVL in S. aureus cultures. The detection limit of the assay with purified native and recombinant antigens was determined to be around 1 ng/ml. Overnight cultures from various solid and liquid media proved suitable for PVL detection. Six hundred strains and clinical isolates from patients from America, Europe, Australia, Africa, and the Middle East were tested. Isolates were genotyped in parallel by DNA microarray hybridization for confirmation of PVL status and assignment to clonal complexes. The sensitivity, specificity, and positive and negative predictive values of the assay in this trial were 99.7, 98.3, 98.4, and 99.7%, respectively. A total of 302 clinical isolates and reference strains were PVL positive and were assigned to 21 different clonal complexes. In summary, the lateral flow test allows rapid and economical detection of PVL in a routine bacteriology laboratory. As the test utilizes cultures from standard media and does not require sophisticated equipment, it can be easily integrated into a laboratory's workflow and might contribute to timely therapy of PVLassociated infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.