Adenoviral vectors (AdV) have received considerable attention for vaccine development because of their high immunogenicity and efficacy. In previous studies, it was shown that DNA immunization of mice with codonoptimized expression plasmids encoding the fusion protein of respiratory syncytial virus (RSV F) resulted in enhanced protection against RSV challenge compared to immunization with plasmids carrying the wild-type cDNA sequence of RSV F. In this study, we constructed AdV carrying the codon-optimized full-length RSV F gene (AdV-F) or the soluble form of the RSV F gene (AdV-Fsol). BALB/c mice were immunized twice with AdV-F or AdV-Fsol and challenged with RSV intranasally. Substantial levels of antibody to RSV F were induced by both AdV vaccines, with peak neutralizing-antibody titers of 1:900. Consistently, the viral loads in lung homogenates and bronchoalveolar lavage fluids were significantly reduced by a factor of more than 60,000. The protection against viral challenge could be measured even 8 months after the booster immunization. AdV-F and AdV-Fsol induced similar levels of immunogenicity and protective efficacy. Therefore, these results encourage further development of AdV vaccines against RSV infection in humans.Human respiratory syncytial virus (RSV) is a highly infectious member of the paramyxovirus family causing upper and lower respiratory tract infections in humans. Serious acute RSV infections, including fatal cases of bronchiolitis and pneumonia, occur particularly in premature infants, immunocompromised adults, and patients with pre-existing chronic lung diseases or underlying heart defects (11,12,14,39,46,56). In young children, RSV is the most common respiratory tract pathogen, accounting for approximately 50% of hospitalizations due to lower respiratory tract infections (21). In population-based surveillance studies for hospitalization in Europe, RSV was identified in 42 to 45% of enrolled children younger than 2 years with lower respiratory tract infections, and the rate of hospitalization due to RSV-induced respiratory illnesses was estimated at 3 to 6% among industrialized nations (45). Children with severe RSV infections suffer from oxygen deficiency with cyanosis and require intensive medical care. Furthermore, RSV infection in childhood is suspected to be a risk factor for development of asthma (36,41,43,59). The urgent need for an RSV vaccine is further demonstrated by a study showing that levels of disease burden, mortality, and morbidity caused by RSV infections in the elderly are comparable to those induced by nonpandemic influenza A infections (11). However, the immunization of children with a formalininactivated (FI) RSV vaccine in the 1960s resulted in a more severe clinical illness, with two fatal cases, than in nonvaccinated infants following RSV infection, pointing out the difficulties in developing a safe and efficacious RSV vaccine (7,29). It was shown previously that the enhanced disease severity and the development of pulmonary eosinophilia are mainly attributable to a...
Exosomes have been proposed as candidates for therapeutic immunization. The present study demonstrates that incorporation of the G protein of vesicular stomatitis virus (VSV-G) into exosome-like vesicles (ELVs) enhances their uptake and induces the maturation of dendritic cells. Targeting of VSV-G and ovalbumin as a model antigen to the same ELVs increased the cross-presentation of ovalbumin via an endosomal acidification mechanism. Immunization of mice with VSV-G and ovalbumin containing ELVs led to an increased IgG2a antibody response, expansion of antigen-specific CD8 T cells, strong in vivo CTL responses, and protection from challenge with ovalbumin expressing tumor cells. Thus, incorporation of VSV-G and targeting of antigens to ELVs are attractive strategies to improve exosomal vaccines.
SummaryThe objective of this study was to characterize the plasmin-induced stimulation of leukotriene (LT) B4 biosynthesis in human peripheral monocytes (PM). Plasmin up to 175 × 10-3 CTA U/ml triggers a concentration-dependent release of 5-lipoxygenase-derived LTB4 while release of the cyclooxygenase products thromboxane (TX) B2 and prostaglandin (PG) E2 remained unaffected. The stimulatory effect appeared to be specific in as much as 1) it was found in PM, but not in polymorphonuclear neutrophils (PMN), 2) it requires the lysine binding sites of plasmin molecule since it was inhibited by the lysine analogues 6-aminohexanoic acid (6-AHA) and trans-4(aminometh-yl)cyclohexane-l-carboxylic acid (t-AMCA), 3) the intact catalytic center of plasmin is required since neither plasminogen nor catalytic center-blocked plasmin share the stimulatory effect of active plasmin, 4) other serine proteases such as a-chymotrypsin, human neutrophil elastase and cathepsin G did not stimulate release of detectable amounts of LTB4 from PM. In addition, catalytic center-blocked plasmin antagonized the stimulatory effect of active plasmin. Plasmin-mediated monocyte activation apparently proceeds via a pertussis toxin-sensitive G protein. Plasmin did not increase inositol (1,4,5) trisphosphate levels, but a time- and concentration-dependent stimulation of cyclic GMP formation was observed. The data show that plasmin is a specific stimulus for human peripheral monocytes. Plasmin may be an important link between the coagulation cascade and inflammatory reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.