Residual blood flow distal to an arterial occlusion in patients with acute ischemic stroke (AIS) is associated with favorable patient outcome. Both collateral flow and thrombus permeability may contribute to such residual flow. We propose a method for discriminating between these two mechanisms, based on determining the direction of flow in multiple branches distal to the occluding thrombus using dynamic Computed Tomography Angiography (dynamic CTA). We analyzed dynamic CTA data of 30 AIS patients and present patient-specific cases that identify typical blood flow patterns and velocities. We distinguished patterns with anterograde (N = 10), retrograde (N = 9), and both flow directions (N = 11), with a large variability in velocities for each flow pattern. The observed flow patterns reflect the interplay between permeability and collaterals. The presented method characterizes distal flow and provides a tool to study patient-specific distal tissue perfusion.
Background Worldwide, hypertensive disorders of pregnancy (HDP), fetal growth restriction (FGR) and preterm birth remain the leading causes of maternal and fetal pregnancy-related mortality and (long-term) morbidity. Fetal cardiac deformation changes can be the first sign of placental dysfunction, which is associated with HDP, FGR and preterm birth. In addition, preterm birth is likely associated with changes in electrical activity across the uterine muscle. Therefore, fetal cardiac function and uterine activity can be used for the early detection of these complications in pregnancy. Fetal cardiac function and uterine activity can be assessed by two-dimensional speckle-tracking echocardiography (2D-STE), non-invasive fetal electrocardiography (NI-fECG), and electrohysterography (EHG). This study aims to generate reference values for 2D-STE, NI-fECG and EHG parameters during the second trimester of pregnancy and to investigate the diagnostic potential of these parameters in the early detection of HDP, FGR and preterm birth. Methods In this longitudinal prospective cohort study, eligible women will be recruited from a tertiary care hospital and a primary midwifery practice. In total, 594 initially healthy pregnant women with an uncomplicated singleton pregnancy will be included. Recordings of NI-fECG and EHG will be made weekly from 22 until 28 weeks of gestation and 2D-STE measurements will be performed 4-weekly at 16, 20, 24 and 28 weeks gestational age. Retrospectively, pregnancies complicated with pregnancy-related diseases will be excluded from the cohort. Reference values for 2D-STE, NI-fECG and EHG parameters will be assessed in uncomplicated pregnancies. After, 2D-STE, NI-fCG and EHG parameters measured during gestation in complicated pregnancies will be compared with these reference values. Discussion This will be the a large prospective study investigating new technologies that could potentially have a high impact on antepartum fetal monitoring. Trial registration Registered on 26 March 2020 in the Dutch Trial Register (NL8769) via https://www.trialregister.nl/trials and registered on 21 October 2020 to the Central Committee on Research Involving Human Subjects (NL73607.015.20) via https://www.toetsingonline.nl/to/ccmo_search.nsf/Searchform?OpenForm.
BackgroundPreterm birth is the main cause of neonatal deaths with increasing mortality and morbidity rates with decreasing GA at time of birth. Currently, premature infants are treated in neonatal intensive care units to support further development. However, the organs of, especially, extremely premature infants (born before 28 weeks of GA) are not mature enough to function optimally outside the womb. This is seen as the main cause of the high morbidity and mortality rates in this group. A liquid-filled incubator, a so-called PLS system, could potentially improve these numbers for extremely premature infants, since this system is designed to mimic the environment of the natural womb. To support the development and implementation of such a complex system and to interpret vital signals of the fetus during a PLS system operation, a digital twin is proposed. This mathematical model is connected with a manikin representing the digital and physical twin of the real-life PLS system. Before developing a digital twin of a fetus in a PLS system, its functional and technical requirements are defined and existing mathematical models are evaluated.Method and resultsThis review summarizes existing 0D and 1D fetal circulatory models that potentially could be (partly) adopted for integration in a digital twin of a fetus in a PLS system based on predefined requirements. The 0D models typically describe hemodynamics and/or oxygen transport during specific events, such as the transition from fetus to neonate. Furthermore, these models can be used to find hemodynamic differences between healthy and pathological physiological states. Rather than giving a global description of an entire cardiovascular system, some studies focus on specific organs or vessels. In order to analyze pressure and flow wave profiles in the cardiovascular system, transmission line or 1D models are used. As for now, these models do not include oxygen transport.ConclusionThis study shows that none of the models identified in literature meet all the requirements relevant for a digital twin of a fetus in a PLS system. Nevertheless, it does show the potential to develop this digital twin by integrating (parts) of models into a single model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.