This study provides a comprehensive overview of the molecular epidemiology of human enterovirus 71 (HEV71) in the Asia-Pacific region from 1997 through 2002. Phylogenetic analysis of the VP4 and VP1 genes of recent HEV71 strains indicates that several genogroups of the virus have been circulating in the Asia-Pacific region since 1997. The first of these recent outbreaks, described in Sarawak (Malaysian Borneo) in 1997, was caused by genogroup B3. This outbreak was followed by large outbreaks in Taiwan in 1998, caused by genogroup C2, and in Perth (Western Australia) in 1999, where viruses belonging to genogroups B3 and C2 cocirculated. Singapore, Taiwan, and Sarawak had HEV71 epidemics in 2000, caused predominantly by viruses belonging to genogroup B4; however, large numbers of fatalities were observed only in Taiwan. HEV71 was identified during an epidemic of hand, foot and mouth disease in Korea; that epidemic was found to be due to viruses constituting a new genogroup, C3.
Human enteroviruses (family Picornaviridae) are the major cause of aseptic meningitis and also cause a wide range of other acute illnesses, including neonatal sepsis-like disease, acute flaccid paralysis, and acute hemorrhagic conjunctivitis. The neutralization assay is usually used for enterovirus typing, but it is labor-intensive and time-consuming and standardized antisera are in limited supply. We have developed a molecular typing system based on reverse transcription-PCR and nucleotide sequencing of the 3′ half of the genomic region encoding VP1. The standard PCR primers amplify approximately 450 bp of VP1 for most known human enterovirus serotypes. The serotype of an “unknown” may be inferred by comparison of the partial VP1 sequence to those in a database containing VP1 sequences for the prototype strains of all 66 human enterovirus serotypes. Fifty-one clinical isolates of known serotypes from the years 1991 to 1998 were amplified and sequenced, and the antigenic and molecular typing results agreed for all isolates. With one exception, the nucleotide sequences of homologous strains were at least 75% identical to one another (>88% amino acid identity). Strains with homologous serotypes were easily discriminated from those with heterologous serotypes by using these criteria for identification. This method can greatly reduce the time required to type an enterovirus isolate and can be used to type isolates that are difficult or impossible to type with standard immunological reagents. The technique may also be useful for the rapid determination of whether viruses isolated during an outbreak are epidemiologically related.
Lassa fever has been estimated to cause 5,000 deaths annually in West Africa. Recently, war in the zone where Lassa fever is hyperendemic has severely impeded control and treatment. Vaccination is the most viable control measure. There is no correlation between antibody levels and outcome in human patients, and inactivated vaccines produce high titers of antibodies to all viral proteins but do not prevent virus replication and death in nonhuman primates. Accordingly, we vaccinated 44 macaques with vaccinia virus-expressed Lassa virus structural proteins separately and in combination, with the object of inducing a predominantly TH1-type immune response. Following Lassa virus challenge, all unvaccinated animals died (0% survival). Nine of 10 animals vaccinated with all proteins survived (90% survival). Although no animals that received full-length glycoprotein alone had a high titer of antibody, 17 of 19 survived challenge (88%). In contrast, all animals vaccinated with nucleoprotein developed high titers of antibody but 12 of 15 died (20% survival). All animals vaccinated with single glycoproteins, G1 or G2, died, but all those that received both single glycoproteins (G1 plus G2) at separate sites survived, showing that both glycoproteins are independently important in protection. Neither group had demonstrable antibody levels prior to challenge. We demonstrate that in primates, immune responses to epitopes on both glycoproteins are required to protect against lethal challenge with Lassa virus without having untoward side effects and that this protection is likely to be primarily cell mediated. We show that an effective, safe vaccine against Lassa virus can and should be made and that its evaluation for human populations is a matter of humanitarian priority.Lassa virus is endemic in rural West Africa. The prevalence of antibody to Lassa virus ranges from 5% in Guinea and 15 to 20% in Sierra Leone and Liberia to over 20% in Nigeria (7,30). Lassa fever has been estimated to cause from 100,000 to 300,000 infections a year and several thousand deaths (30). The fatality rate for hospitalized patients is about 17%, but in certain groups of patients, such as pregnant women in their third trimester, more than 30% may die, and fetal or neonatal loss is about 88% (34). Deafness is a common complication of Lassa fever, affecting as many as 15% of patients and rendering an estimated 1 to 2% of the population hearing impaired in areas with high rates of infection (11). Treatment with intravenous ribavirin has been shown to be effective; however, it is not widely available in the areas where the disease is endemic and must be administered in the first week of illness for optimal efficacy (28). Recently, social and economic conditions have deteriorated in areas of high endemicity of eastern Sierra Leone and Liberia, and incidence and mortality have increased (R. Allan, R. Ladbury, K. Skinner, and S. Mardel, Abstr. Int. Conf. Emerg. Infect. Dis., abstr. 16, p. 21, 1998).Lassa virus, an arenavirus, exhibits persistent, asymptomat...
Summary Background Enterovirus D68 (EV-D68) has been infrequently reported historically, and is typically associated with isolated cases or small clusters of respiratory illness. Beginning in August, 2014, increases in severe respiratory illness associated with EV-D68 were reported across the USA. We aimed to describe the clinical, epidemiological, and laboratory features of this outbreak, and to better understand the role of EV-D68 in severe respiratory illness. Methods We collected regional syndromic surveillance data for epidemiological weeks 23 to 44, 2014, (June 1 to Nov 1, 2014) and hospital admissions data for epidemiological weeks 27 to 44, 2014, (June 29 to Nov 1, 2014) from three states: Missouri, Illinois and Colorado. Data were also collected for the same time period of 2013 and 2012. Respiratory specimens from severely ill patients nationwide, who were rhinovirus-positive or enterovirus-positive in hospital testing, were submitted between Aug 1, and Oct 31, 2014, and typed by molecular sequencing. We collected basic clinical and epidemiological characteristics of EV-D68 cases with a standard data collection form submitted with each specimen. We compared patients requiring intensive care with those who did not, and patients requiring ventilator support with those who did not. Mantel-Haenszel χ2 tests were used to test for statistical significance. Findings Regional and hospital-level data from Missouri, Illinois, and Colorado showed increases in respiratory illness between August and September, 2014, compared with in 2013 and 2012. Nationwide, 699 (46%) of 1529 patients tested were confirmed as EV-D68. Among the 614 EV-D68-positive patients admitted to hospital, age ranged from 3 days to 92 years (median 5 years). Common symptoms included dyspnoea (n=513 [84%]), cough (n=500 [81%]), and wheezing (n=427 [70%]); 294 (48%) patients had fever. 338 [59%] of 574 were admitted to intensive care units, and 145 (28%) of 511 received ventilator support; 322 (52%) of 614 had a history of asthma or reactive airway disease; 200 (66%) of 304 patients with a history of asthma or reactive airway disease required intensive care compared with 138 (51%) of 270 with no history of asthma or reactive airway disease (p=0·0004). Similarly, 89 (32%) of 276 patients with a history of asthma or reactive airway disease required ventilator support compared with 56 (24%) of 235 patients with no history of asthma or reactive airway disease (p=0·039). Interpretation In 2014, EV-D68 caused widespread severe respiratory illness across the USA, disproportionately affecting those with asthma. This unexpected event underscores the need for robust surveillance of enterovirus types, enabling improved understanding of virus circulation and disease burden. Funding None.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.