We have measured the kinetics of inorganic phosphate (Pi) release during a single turnover of actomyosin nucleoside triphosphate (NTP) hydrolysis using a double-mixing stopped-flow spectrofluorometer, at very low ionic strength to increase the affinity of myosin-ATP and myosin-ADP-Pi to actin. Myosin subfragment 1 and a series of nucleoside triphosphates were mixed and incubated for approximately 1-10 s to allow NTP to bind to myosin and generate a steady state mixture of myosin-NTP and myosin-NDP-Pi. The steady state intermediates were then mixed with actin. The kinetics of Pi release were measured using a fluorescent probe for Pi, based on a phosphate binding protein [Brune et al. (1994) Biochemistry 33, 8262-8271]. These data are correlated with quenched-flow data, where the extent of the rapid burst of hydrolysis during the first turnover of ATP hydrolysis was followed by chemical quenching of the reaction mix at various times after rapidly mixing ATP and myosin subfragment 1. From the double-mixing actomyosin measurements, the kinetics of Pi release are biphasic. The fast phase corresponds to Pi release from the associated actomyosin-ADP-Pi complex. The slow phase measures the rate of the cleavage step on associated actomyosin. At saturating actin, there is a correlation between the amplitude of the fast phase and the size of the Pi burst observed by quenched flow in the absence of actin: the size of this phase corresponds to the amount of myosin-ADP-Pi formed during the first mix. For ATP at 20 degrees C the rate of the Pi release step is 75 (+/-5) s-1, 25-fold larger than the cleavage step, which is the rate-limiting step of actomyosin ATP hydrolysis at saturating actin. The rate constant of Pi release varies only slightly with nucleoside structure. The rate constant of the slow phase of the Pi release (measuring cleavage) is highly dependent upon the structure of the NTP substrate.
We determined the effect of Omecamtiv Mecarbil, a novel allosteric effector of cardiac muscle myosin, on the kinetic and "in vitro" motility properties of the porcine ventricular heavy meromyosin (PV-HMM). Omecamtiv Mecarbil increases the equilibrium constant of the hydrolysis step (M-ATP ⇄ M-ADP-Pi) from 2.4 to 6 as determined by quench flow, but the maximal rates of both the hydrolysis step and tryptophan fluorescence increase are unchanged by the drug. OM also increases the amplitude of the fast phase of phosphate dissociation (AM-ADP-Pi → AM-ADP + Pi) that is associated with force production in muscle by 4-fold. These results suggest a mechanism in which hydrolysis of M-ATP to M-ADP-Pi occurs both before and after the recovery stroke, but rapid acceleration of phosphate dissociation by actin occurs only on post-recovery stroke A-M-ADP-Pi. One of the more dramatic effects of OM on PV-HMM is a 14-fold decrease in the unloaded shortening velocity measured by the in vitro motility assay. The increase in flux through phosphate dissociation and the unchanged rate of ADP dissociation (AM-ADP → AM + ADP) by the drug produce a higher duty ratio motor in which a larger fraction of myosin heads are strongly bound to actin filaments. The increased internal load produced by a larger fraction of strongly attached crossbridges explains the reduced rate of in vitro motility velocity in the presence of OM and predicts that the drug will produce slower and stronger contraction of cardiac muscle.
Muscle contraction relies on the interaction of myosin motors with F-actin, which is regulated through a translocation of tropomyosin by the troponin complex in response to Ca 2+ . The current model of muscle regulation holds that at relaxing (low-Ca 2+ ) conditions tropomyosin blocks myosin binding sites on F-actin, whereas at activating (high-Ca 2+ ) conditions tropomyosin translocation only partially exposes myosin binding sites on F-actin so that binding of rigor myosin is required to fully activate the thin filament (TF). Here we used a single-particle approach to helical reconstruction of frozen hydrated native cardiac TFs under relaxing and activating conditions to reveal the azimuthal movement of the tropomyosin on the surface of the native cardiac TF upon Ca 2+ activation. We demonstrate that at either relaxing or activating conditions tropomyosin is not constrained in one structural state, but rather is distributed between three structural positions on the surface of the TF. We show that two of these tropomyosin positions restrain actomyosin interactions, whereas in the third position, which is significantly enhanced at high Ca 2+ , tropomyosin does not block myosin binding sites on F-actin. Our data provide a structural framework for the enhanced activation of the cardiac TF over the skeletal TF by Ca 2+ and lead to a mechanistic model for the regulation of the cardiac TF.thin filament | cardiac muscle regulation | cryoelectron microscopy
SUMMARY Muscle contraction relies on interaction between myosin-based thick filaments and actin-based thin filaments. Myosin binding protein-C (MyBP-C) is a key regulator of actomyosin interactions. Recent studies established that the N’-terminal domains (NTDs) of MyBP-C can either activate or inhibit thin filaments, but the mechanism of their collective action is poorly understood. Cardiac MyBP-C (cMyBP-C) harbors an extra NTD which is absent in skeletal isoforms of MyBP-C and its role in regulation of cardiac contraction is unknown. Here we show that the first two domains of human cMyPB-C (i.e., C0 and C1) cooperate to activate the thin filament. We demonstrate that C1 interacts with tropomyosin via a positively charged loop and that this interaction, stabilized by the C0 domain, is required for thin filament activation by cMyBP-C. Our data reveal a mechanism by which cMyBP-C can modulate cardiac contraction and demonstrate a function of the C0 domain.
The thick filaments of mammalian and avian skeletal muscle fibers are disordered at low temperature, but become increasingly ordered into an helical structure as the temperature is raised. Wray and colleagues (Schlichting, I., and J. Wray. 1986. J. Muscle Res. Cell Motil. 7:79; Wray, J., R. S. Goody, and K. Holmes. 1986. Adv. Exp. Med. Biol. 226:49-59) interpreted the transition as reflecting a coupling between nucleotide state and global conformation with M.ATP (disordered) being favored at 0 degrees C and M.ADP.P(i) (ordered) at 20 degrees C. However, hitherto this has been limited to a qualitative correlation and the biochemical state of the myosin heads required to obtain the helical array has not been unequivocally identified. In the present study we have critically tested whether the helical arrangement of the myosin heads requires the M.ADP.P(i) state. X-ray diffraction patterns were recorded from skinned rabbit psoas muscle fiber bundles stretched to non-overlap to avoid complications due to interaction with actin. The effect of temperature on the intensities of the myosin-based layer lines and on the phosphate burst of myosin hydrolyzing ATP in solution were examined under closely matched conditions. The results showed that the fraction of myosin mass in the helix closely followed that of the fraction of myosin in the M.ADP.P(i) state. Similar results were found by using a series of nucleoside triphosphates, including CTP and GTP. In addition, fibers treated by N-phenylmaleimide (Barnett, V. A., A. Ehrlich, and M. Schoenberg. 1992. Biophys. J. 61:358-367) so that the myosin was exclusively in the M.ATP state revealed no helical order. Diffraction patterns from muscle fibers in nucleotide-free and in ADP-containing solutions did not show helical structure. All these confirmed that in the presence of nucleotides, the M.NDP.P(i) state is required for helical order. We also found that the spacing of the third meridional reflection of the thick filament is linked to the helical order. The spacing in the ordered M.NDP.P(i) state is 143.4 A, but in the disordered state, it is 144. 2 A. This may be explained by the different interference functions for the myosin heads and the thick filament backbone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.