In this work, the electrical and photoresponse measurements of a transparent conductive Al-doped ZnO (AZO)/n-Si heterojunction device were conducted in visible light and UV wavelengths. AZO film was deposited by sputtering onto an n-Si wafer and investigated by means of morphological, chemical and electrical characterizations. The AZO/n-Si rectifying device exhibits an excellent reproducibility without noticeable variations after 90 days of measurements. At self-powered mode, the maximum on/off ratios were determined as 3081 for visible light and 4778 for UV light illumination of 365 nm. The responsivity and detectivity of the AZO/n-Si photodetector were 0.128 A W−1 and 1.05 × 1011 Jones for 365 nm, whereas they were 0.055 A W−1 and 4.60 × 1010 Jones for 395 nm, respectively (at −2.0 V). This study demonstrated that the n-AZO/n-Si isotype heterojunction photodetector was fabricated at low cost and it is a potential candidate in both the visible region and the UV region with a good performance, in contrast to the widely studied pn heterojunctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.