Even though ground penetrating radar has been well studied and applied by many researchers for the last couple of decades, the focusing problem in the measured GPR images is still a challenging task. Although there are many methods offered by different scientists, there is not any complete migration/focusing method that works perfectly for all scenarios. This paper reviews the popular migration methods of the B-scan GPR imaging that have been widely accepted and applied by various researchers. The brief formulation and the algorithm steps for the hyperbolic summation, the Kirchhoff migration, the back-projection focusing, the phase-shift migration, and theω-kmigration are presented. The main aim of the paper is to evaluate and compare the migration algorithms over different focusing methods such that the reader can decide which algorithm to use for a particular application of GPR. Both the simulated and the measured examples that are used for the performance comparison of the presented algorithms are provided. Other emerging migration methods are also pointed out.
Abstract:In this paper, we present a new simulator called pRediCS for the calculation of electromagnetic scattering and radar cross-section (RCS) from electrically large and complex targets. The simulator utilizes the geometric optics (GO) theory and launching of electromagnetic rays for tracing and calculating the electric field values as the electromagnetic waves bounce around the target. The physical optics (PO) theory is also exploited to calculate the final scattered electric field by calculating the far-field PO integration along the observation direction. The simulator is first tested with known objects of canonical shapes, whose analytical solutions are available in the literature. Next, our implemented GO-POtype algorithm is validated by simulating the benchmark targets that have been well studied and documented by various studies. Finally, the RCS computation from complex and electrically large objects is calculated. By utilizing the RCS values for different frequencies and aspects, a successful inverse synthetic aperture radar image of the target with fast simulation time is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.