tRNAs play a critical role in mRNA decoding, and posttranscriptional modifications within tRNAs drive decoding efficiency and accuracy. The types and positions of tRNA modifications in model bacteria have been extensively studied, and tRNA modifications in a few eukaryotic organisms have also been characterized and localized to particular tRNA sequences. However, far less is known regarding tRNA modifications in archaea. While the identities of modifications have been determined for multiple archaeal organisms, Haloferax volcanii is the only organism for which modifications have been extensively localized to specific tRNA sequences. To improve our understanding of archaeal tRNA modification patterns and codondecoding strategies, we have used liquid chromatography and tandem mass spectrometry to characterize and then map posttranscriptional modifications on 34 of the 35 unique tRNA sequences of Methanocaldococcus jannaschii. A new posttranscriptionally modified nucleoside, 5-cyanomethyl-2-thiouridine (cnm 5 s 2 U), was discovered and localized to position 34. Moreover, data consistent with wyosine pathway modifications were obtained beyond the canonical tRNA Phe as is typical for eukaryotes. The high-quality mapping of tRNA anticodon loops enriches our understanding of archaeal tRNA modification profiles and decoding strategies. IMPORTANCE While many posttranscriptional modifications in M. jannaschii tRNAs are also found in bacteria and eukaryotes, several that are unique to archaea were identified. By RNA modification mapping, the modification profiles of M. jannaschii tRNA anticodon loops were characterized, allowing a comparative analysis with H. volcanii modification profiles as well as a general comparison with bacterial and eukaryotic decoding strategies. This general comparison reveals that M. jannaschii, like H. volcanii, follows codon-decoding strategies similar to those used by bacteria, although position 37 appears to be modified to a greater extent than seen in H. volcanii.
Ultraviolet radiation (UVR) is a known genotoxic agent. Although its effects on DNA have been well-documented, its impact on RNA and RNA modifications is less studied. By using Escherichia coli tRNA (tRNA) as a model system, we identify the UVA (370 nm) susceptible chemical groups and bonds in a large variety of modified nucleosides. We use liquid chromatography tandem mass spectrometry to identify specific nucleoside photoproducts under in vitro and in vivo conditions, which were then verified by employing stable-isotope labeled tRNAs. These studies suggest that the -amino or -oxy groups of modified nucleosides, in addition to sulfur, are labile in the oxidative environment generated by UVA exposure. Further, these studies document a range of RNA photoproducts and post-transcriptional modifications that arise because of UVR-induced cellular stress.
We report the identification and use of a mutant of the purine selective ribonuclease RNase U2 that randomly cleaves RNA in a manner that is directly compatible with RNA modification mapping by mass spectrometry. A number of RNase U2 mutants were generated using site-saturation mutagenesis. The enzyme activity and specificity were tested using oligonucleotide substrates, which revealed an RNase U2 E49A mutant with limited specificity and a tendency to undercut RNA. Using this mutant, RNA digestion conditions were optimized to yield long, overlapping digestion products, which improve sequence coverage in RNA modification mapping experiments. The analytical utility of this mutant was demonstrated by liquid chromatography tandem mass spectrometry (LC-MS/MS) mapping of several modified RNAs where 100% sequence coverage could be obtained using only a single enzymatic digestion. This new mutant facilitates more accurate and efficient RNA modification mapping than traditional highly base-specific RNases that are currently used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.