Chromosome 16 contains multiple copy number variations (CNVs) that predispose to genomic disorders. Here, we differentiate pathogenic duplications of 16p11.2-p12.2 from microscopically similar euchromatic variants of 16p11.2. Patient 1 was a girl of 18 with autism, moderate intellectual disability, behavioural difficulties, dysmorphic features and a 7.71-Mb (megabase pair) duplication (16:21 521 005-29 233 146). Patient 2 had a 7.81-Mb duplication (16:21 382 561-29 191 527), speech delay and obsessional behaviour as a boy and, as an adult, short stature, macrocephaly and mild dysmorphism. The duplications contain 65 coding genes of which Polo-like kinase 1 (PLK1) has the highest likelihood of being haploinsufficient and, by implication, a triplosensitive gene. An additional 1.11-Mb CNV of 10q11.21 in Patient 1 was a possible modifier containing the G-protein-regulated inducer of neurite growth 2 (GPRIN2) gene. In contrast, the euchromatic variants in Patients 3 and 4 were amplifications from a 945-kb region containing non-functional immunoglobulin heavy chain (IGHV), hect domain pseudogene (HERC2P4) and TP53-inducible target gene 3 (TP53TG3) loci in proximal 16p11.2 (16:31 953 353-32 898 635). Paralogous pyrosequencing gave a total copy number of 3-8 in controls and 8 to >10 in Patients 3 and 4. The 16p11.2-p12.2 duplication syndrome is a recurrent genomic disorder with a variable phenotype including developmental delay, dysmorphic features, mild to severe intellectual disability, autism, obsessive or stereotyped behaviour, short stature and anomalies of the hands and fingers. It is important to differentiate pathogenic 16p11.2-p12.2 duplications from harmless, microscopically similar euchromatic variants of proximal 16p11.2, especially at prenatal diagnosis.
Angelman syndrome (AS) is characterised by developmental delay, lack of speech, seizures, a characteristic behavioural profile with a happy demeanour, microcephaly, and ataxia. More than two-thirds of cases are due to an approximately 5-Mb interstitial deletion of the imprinted region 15q11.2q13, which is usually de novo. The rest are associated with point mutations in the UBE3A gene, imprinting defects, and paternal uniparental disomy. Small intragenic UBE3A deletions have rarely been described. They are usually maternally inherited, increasing the recurrence risk to 50%, and may be missed by conventional testing (methylation studies and UBE3A gene sequencing). We describe a boy with AS due to an 11.7-kb intragenic deletion. The deletion was identified by array-CGH and was subsequently detected in his affected first cousin and unaffected maternal grandfather, mother, and aunt, confirming the silencing of the paternal allele. The patient had developmental delay, speech impairment, a happy demeanour, microcephaly, and an abnormal EEG, but no seizures by the age of 4 years. Delineation of the underlying genetic mechanism is of utmost importance for reasons of genetic counselling, as well as appropriate management and prognosis. Alternative techniques, such as array-CGH and MLPA, are necessary when conventional testing for AS has failed to identify the underlying genetic mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.