Several consensus algorithms have been proposed as a way of resolving the Byzantine General problem with respect to blockchain consensus process. However, when these consensus algorithms are applied to a distributed, asynchronous network some suffer with security and/or scalability issues, while others suffer with liveness and/or safety issues. This is because the majority of research have not considered the importance of liveness and safety, with respect to the integrity of the consensus decision. In this paper a novel solution to this challenge is presented. A solution that protects blockchain transactions from fraudulent or erroneous mis-spends. This consensus protocol uses a combination of probabilistic randomness, an isomorphic balance authentication, error detection and synchronised time restrictions, when assessing the authenticity and validity of IoT request. Designed to operate in a distributed asynchronous network, this approach increases scalability while maintaining a high transactional throughput, even when faced with Byzantine failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.